Math, asked by rishikareddy167, 1 year ago

xdx+ydy=a^2(xdy-ydx)/x^2+y^2

Answers

Answered by MaheswariS
10

Answer:


Step-by-step explanation:


I think that your question may be

xdx+ydy={a}^2(xdy+ydx)/({x}^2+{y}^2)

({x}^2+{y}^2)(xdx+ydy)={a}^2(xdy+ydx)..(1)

Take, \\u={x}^2+{y}^2\\\frac{du}{dx}=2x+2y\frac{dy}{dx}\\\frac{du}{dx}=2(x+y\frac{dy}{dx})\\\frac{du}{2}=xdx+ydy



v=xy\\\frac{dv}{dx}=x\frac{dy}{dx}+y.1\\dv=xdy+ydx\\Now (1) becomes\\

u\frac{du}{2}={a}^2dv\\Integrating\\\frac{1}{2}\int\:u\:du={a}^2\int\:dv\\

\frac{{u}^2}{2}={a}^2v+c\\\frac{{({x}^2+{y}^2)}^2}{2}={a}^2xy+c

Answered by abhi178
7
it is given that, xdx+ydy=a^2\frac{xdy-ydx}{x^2+y^2}

first of all, resolve xdx + ydy 
xdx + ydy = 1/2(2xdx + 2ydy)
= 1/2d(x² + y²)

you know, d(tan^{-1}P)=\frac{1}{1+P^2}

so, d\left(tan^{-1}\frac{y}{x}\right)=\frac{x^2}{x^2+y^2}\frac{xdy-ydx}{x^2}

d\left(tan^{-1}\frac{y}{x}\right)=\frac{xdy-ydx}{x^2+y^2}

hence, xdx+ydy=a^2\frac{xdy-ydx}{x^2+y^2} is converted into 
\frac{1}{2}d(x^2+y^2)=a^2d\left(tan^{-1}\frac{y}{x}\right)

or, d\left(\frac{x^2}{2}+\frac{y^2}{2}\right)=d\left(a^2tan^{-1}\frac{y}{x}\right)

or, \frac{x^2}{2}+\frac{y^2}{2}=a^2tan^{-1}\frac{y}{x}+C

hence, solution is \frac{x^2}{2}+\frac{y^2}{2}=a^2tan^{-1}\frac{y}{x}+C
Similar questions