Math, asked by shatma71, 4 months ago

xdy=(y+4x^5 e^x^4)dx

#dont spam
# give quality answer
#solve With e expalnation​

Answers

Answered by BrainlyEmpire
24

\textbf{Given:}

\mathsf{x\,dy=(y+4x^5\,e^{x^4})dx}

\textbf{To find:}

\textsf{solution of the given differential equation}

\textbf{Solution:}

\textbf{We apply variale separable method to solve the differential equation}

\mathsf{Consider,}

\mathsf{x\,dy=(y+4x^5\,e^{x^4})dx}

\mathsf{x\,dy=y\,dx+4x^5\,e^{x^4}\,dx}

\mathsf{x\,dy-y\,dx=(x^2)4x^3\,e^{x^4}\,dx}

\mathsf{\dfrac{x\,dy-y\,dx}{x^2}=4x^3\,e^{x^4}\,dx}

\boxed{\begin{minipage}{4cm}$\\\mathsf{Take\;t=x^4}\\\\\mathsf{\dfrac{dt}{dx}=4x^3}\\\\\mathsf{dt=4x^3\,dx}\\$\end{minipage}}

\boxed{\begin{minipage}{4cm}$\\\mathsf{Take\;u=\dfrac{y}{x}}\\\\\mathsf{\dfrac{du}{dx}=\dfrac{x\frac{dy}{dx}-y.1}{x^2}}\\\\\mathsf{du=\dfrac{x\,dy-y\,dx}{x^2}}\\$\end{minipage}}

\implies\mathsf{du=e^t\,dt}

\mathsf{Integrating,}

\implies\mathsf{\int\,du=\int\,e^t\,dt}

\implies\mathsf{u=e^t+c}

\implies\boxed{\mathsf{\dfrac{y}{x}=e^{x^4}+c}}

\textsf{Which is the required solution}

\pink{\sf{\star\;Note}}

  • \textsf{Kindly view Answer from brainly.in  for better understanding the concept used  here. Thank u! :D}
Similar questions
Math, 2 months ago