Math, asked by nitinparjapat, 3 months ago

xdy-ydx=x√x²-y²dx
by inspection method ​

Answers

Answered by senboni123456
1

Step-by-step explanation:

xdy - ydx = x \sqrt{ {x}^{2} +  {y}^{2}  } dx

 \implies \frac{xdy - ydx}{ {y}^{2} }  =  \frac{x}{y}  \sqrt{ (\frac{x}{y} )^{2}  - 1} dx \\

 \implies  \frac{d(\frac{x}{y})}{ \frac{x}{y} \sqrt{( \frac{x}{y}) ^{2}  - 1}  }  = dx \\

Integratigrating both sides,

\implies  \int \frac{d(\frac{x}{y})}{ \frac{x}{y} \sqrt{( \frac{x}{y}) ^{2}  - 1}  }  = \int  dx \\

 \implies  \sec^{ - 1} ( \frac{x}{y} )  = x + c

 \implies \: y = x \cos(x + c)

Similar questions