Math, asked by kotipallivineesha, 1 day ago

(Xe^xy+2y)dy/dx+ye^xy=0









Answers

Answered by senboni123456
3

Step-by-step explanation:

We have,

 \left( x \:   {e}^{xy}  + 2y\right) \dfrac{dy}{dx}  + y \:  {e}^{xy}  = 0

 \implies \left( x \:   {e}^{xy}  + 2y\right) dy  + y \:  {e}^{xy} \: dx  = 0 \\

 \implies  x \:   {e}^{xy}   \: dy+ 2y \:  dy  + y \:  {e}^{xy} \: dx  = 0 \\

 \implies   {e}^{xy} \left(  x \: dy+ y  \: dx  \right)  + 2y \: dy= 0 \\

 \implies   {e}^{xy}  \: d(xy)  + 2y \: dy= 0 \\

On integrating,

 \displaystyle \implies   \int {e}^{xy}  \: d(xy)  + \int 2y \: dy=  \int0 \\

 \displaystyle \implies    {e}^{xy}    +2 \int y \: dy=  c \\

 \displaystyle \implies    {e}^{xy}    +2  \cdot \dfrac{ y^{2} }{2} =  c \\

 \displaystyle \implies    {e}^{xy}    +y^{2} =  c \\

 \boxed{    {y}^{2} +    {e}^{xy}   =  c }\\

Similar questions