Math, asked by ashutoshparamanik001, 18 days ago

(xiv) if x ²+5y² +9z^2-2y(2x + 3z)=0 so find the value of x:y:z = ?​

Answers

Answered by pallavi4379
2

Answer:

x:y:z = 6:3:1

Step-by-step explanation:

The given equation is

{x}^{2} + 5 {y}^{2} + 9 {z}^{2} - 2y(2x + 3z) = 0x

2

+5y

2

+9z

2

−2y(2x+3z)=0

{x}^{2} + 5 {y}^{2} + 9 {z}^{2} - 4xy - 6xz = 0x

2

+5y

2

+9z

2

−4xy−6xz=0

( {x}^{2} - 4xy + 4 {y}^{2} ) + ( {y}^{2} - 6xz + 9 {z}^{2} ) = 0(x

2

−4xy+4y

2

)+(y

2

−6xz+9z

2

)=0

{(x - 2y)}^{2} + {(y - 3z)}^{2} = 0(x−2y)

2

+(y−3z)

2

=0

since \: \: {(x - 2y)}^{2} \geqslant 0since(x−2y)

2

⩾0

and \: {(y - 3z)}^{2} \geqslant 0and(y−3z)

2

⩾0

the above equation is possible only if both terms are zero.

{(x - 2y)}^{2} =\: {(y - 3z)}^{2} = 0(x−2y)

2

=(y−3z)

2

=0

(x - 2y) = (y - 3z) = 0(x−2y)=(y−3z)=0

x = 2y \: \: and \: y = 3zx=2yandy=3z

\frac{x}{2} = y = 3z

2

x

=y=3z

\frac{x}{6} = \frac{y}{3} = \frac{z}{1}

6

x

=

3

y

=

1

z

Hence x:y:z = 6:3:1please mark me brainlist

Similar questions