Math, asked by Nekkantipavani9, 7 months ago

xlogx dy/dx+y=logx2​

Answers

Answered by mamtashukla97
1

Answer:

thank you for your free points...xD

Answered by aryan073
2

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\mathtt{\huge{\underline{\red{Answer\: :}}}}

 \:  \large \bullet \green{ \bold{ \underline{step \: by \: step \: explaination}}}

Given:

xlogx dy/dx +y=logx²

Formula:

 \bf{ \bullet \ \frac{dy}{dx}  = x = 1}

 \:  \bf \bullet \:  \frac{dy}{dx}  = logx =  \frac{1}{x}

 \:  \bf{ \bullet \: \frac{dy}{dx}  =  log {x}^{2}  = 2logx \times  \frac{1}{x} } \:  \:  \:  \:

 \:  \bf{ \bullet \:  \frac{dy}{dx}  = y = dy}

Apply the formula in this equation :

 \:  \implies \displaystyle \sf \: xlogx+  \frac{dy}{dx}  + y = log {x}^{2}

 \:  \implies \displaystyle \sf \: xlogx + y - log {x}^{2}  =  \frac{dy}{dx}

Differentiating the equation with respect to x:

 \:  \implies \displaystyle \sf \: xlogx + y - log {x}^{2}  =  \frac{dy}{dx}

 \:   \\ \implies \displaystyle \sf \: x \frac{1}{x}  +  \frac{dy}{dx}  - 2logx \times  \frac{1}{x}  =  \frac{dy}{dx}

 \:  \:  \implies \displaystyle \sf \: 1 +  \frac{dy}{dx}  -  \frac{2logx}{x}  =  \frac{dy}{dx}

Similar questions