Xplain hawlins radiations...no google copies
Answers
Answered by
0
Hawking radiation is blackbody radiation that is predicted to be released by black holes, due to quantum effects near the event horizon. It is named after the physicist Stephen Hawking, who provided a theoretical argument for its existence in 1974.
In 1975 Hawking published a shocking result: if one takes quantum theory into account, it seems that black holes are not quite black! Instead, they should glow slightly with "Hawking radiation", consisting of photons, neutrinos, and to a lesser extent all sorts of massive particles. This has never been observed, since the only black holes we have evidence for are those with lots of hot gas falling into them, whose radiation would completely swamp this tiny effect. Indeed, if the mass of a black hole is M solar masses, Hawking predicted it should glow like a blackbody of temperature
6 × 10-8/M kelvins,
so only for very small black holes would this radiation be significant. Still, the effect is theoretically very interesting, and folks working on understanding how quantum theory and gravity fit together have spent a lot of energy trying to understand it and its consequences. The most drastic consequence is that a black hole, left alone and unfed, should radiate away its mass, slowly at first but then faster and faster as it shrinks, finally dying in a blaze of glory like a hydrogen bomb. But the total lifetime of a black hole of M solar masses works out to be
1071 M3 seconds
so don't wait around for a big one to give up the ghost. (People have looked for the death of small ones that could have formed in the big bang, but they haven't seen any.)
How does this work? Well, you'll find Hawking radiation explained this way in a lot of "pop-science" treatments
Hope this will help you.. ✌
In 1975 Hawking published a shocking result: if one takes quantum theory into account, it seems that black holes are not quite black! Instead, they should glow slightly with "Hawking radiation", consisting of photons, neutrinos, and to a lesser extent all sorts of massive particles. This has never been observed, since the only black holes we have evidence for are those with lots of hot gas falling into them, whose radiation would completely swamp this tiny effect. Indeed, if the mass of a black hole is M solar masses, Hawking predicted it should glow like a blackbody of temperature
6 × 10-8/M kelvins,
so only for very small black holes would this radiation be significant. Still, the effect is theoretically very interesting, and folks working on understanding how quantum theory and gravity fit together have spent a lot of energy trying to understand it and its consequences. The most drastic consequence is that a black hole, left alone and unfed, should radiate away its mass, slowly at first but then faster and faster as it shrinks, finally dying in a blaze of glory like a hydrogen bomb. But the total lifetime of a black hole of M solar masses works out to be
1071 M3 seconds
so don't wait around for a big one to give up the ghost. (People have looked for the death of small ones that could have formed in the big bang, but they haven't seen any.)
How does this work? Well, you'll find Hawking radiation explained this way in a lot of "pop-science" treatments
Hope this will help you.. ✌
Similar questions