xsin theta = 1 and r cos= find tan theta+ 1
Answers
Answered by
0
Step-by-step explanation:
We have , ∫π/30tanθ2ksecθ−−−−−−√dθ=1−12–√,(k>0)
Let I=∫π/30tanθ2ksecθ−−−−−−√dθ=12k−−√∫π/30tanθsecθ−−−−√dθ
=12k−−√∫π/30(sinθ)(cos)θ1cosθ−−−−√dθ=12k−−√∫π/30sinθcosθ−−−−√dθ
Let cosθ=t⇒−sinθdθ=dt⇒sinθdθ=−dt
for lower limit , θ=0⇒t=cos0=1
for upper limit , θ=π3⇒t=cosπ3=12
⇒I=12k−−√∫1/21dtt√=−12k−−√∫1/21t−12dt
=−12k−−√(t12+1−12+1)12=−12k−−√[2t√]121
=−22k−−√[12−−√−1–√]1=22k−−√−(1−12–√) ∵I=1−12–√ (given)
∴22k−−√(1−12–√)=1−12–√⇒22k−−√=1
⇒2=2k−−√⇒2k=4⇒k=2
Answered by
0
Answer:
rsinθ=1
rcosθ=3–√
⇒ rsinθ rcosθ=13–√
⇒tanθ=13–√
⇒3–√tanθ=1(Add 1 both sides)
⇒3–√tanθ+1=1+1
⇒3–√tanθ+1=2
Similar questions