Math, asked by Punam864, 1 month ago

xsin³p+ ycos³p = sinpcosp, xsinp= ycosp, prove that x²+y²=1

Answers

Answered by suhail2070
0

Answer:

  {x}^{2}  +  {y}^{2}  = 1

Step-by-step explanation:

x { \sin(p) }^{3}  + y { \cos(p) }^{3}  =  \sin(p)  \cos(p)  \\  \\ x \sin(p) = y  \cos(p)  \\  \\ from \: these \: equations \:  \:  \\  \\ y \cos(p)  { \sin(p) }^{2}  + y { \cos(p) }^{3}  =  \sin(p)  \cos(p)  \\  \\ y \cos(p) ( { \sin(p) }^{2}  +  { \cos(p) }^{2} ) =  \sin(p)  \cos(p)  \\  \\ y \cos(p)  =  \sin(p)  \cos(p)  \\  \\ y  = \sin(p)  \\  \\ therefore \:  \:  \:  \: x =  \cos(p)  \\  \\  \\ then \:  \:  {x}^{2}  +  {y}^{2}  =  \cos(p) ^2 +  { \sin(p) }^{2}  \\  \\  = 1 \\  \\ therefore \:  \:  \:  {x}^{2}  +  {y}^{2}  = 1

Similar questions