(xSinA-yCosA)^2+(xCosA+yCosA)^2=x^2+y^2
Answers
Consider LHS
We know
and
then
We know,
So, using this identity, we get
Hence,
Additional Information:-
- Relationship between sides and T ratios
sin θ = Opposite Side/Hypotenuse
cos θ = Adjacent Side/Hypotenuse
tan θ = Opposite Side/Adjacent Side
sec θ = Hypotenuse/Adjacent Side
cosec θ = Hypotenuse/Opposite Side
cot θ = Adjacent Side/Opposite Side
- Reciprocal Identities
cosec θ = 1/sin θ
sec θ = 1/cos θ
cot θ = 1/tan θ
sin θ = 1/cosec θ
cos θ = 1/sec θ
tan θ = 1/cot θ
- Co-function Identities
sin (90°−x) = cos x
cos (90°−x) = sin x
tan (90°−x) = cot x
cot (90°−x) = tan x
sec (90°−x) = cosec x
cosec (90°−x) = sec x
- Fundamental Trigonometric Identities
sin²θ + cos²θ = 1
sec²θ - tan²θ = 1
cosec²θ - cot²θ = 1
\large\underline{\sf{To\:prove- }}
Toprove−
\sf \: {(xsinA - ycosA)}^{2} + {(xcosA + ysinA)}^{2} = {x}^{2} + {y}^{2}(xsinA−ycosA)
2
+(xcosA+ysinA)
2
=x
2
+y
2
\large\underline{\sf{Solution-}}
Solution−
Consider LHS
\rm :\longmapsto\:\sf \: {(xsinA - ycosA)}^{2} + {(xcosA + ysinA)}^{2}:⟼(xsinA−ycosA)
2
+(xcosA+ysinA)
2
We know
\boxed{ \tt{ \: \: {(x + y)}^{2} = {x}^{2} + {y}^{2} + 2xy \: \: }}
(x+y)
2
=x
2
+y
2
+2xy
and
\boxed{ \tt{ \: \: {(x - y)}^{2} = {x}^{2} + {y}^{2} - 2xy \: \: }}
(x−y)
2
=x
2
+y
2
−2xy
then
\sf\: = {x}^{2} {sin}^{2}A + {y}^{2} {cos}^{2}A - 2xysinAcosA + {x}^{2} {cos}^{2}A + {y}^{2} {sin}^{2}A + 2xysinAcosA=x
2
sin
2
A+y
2
cos
2
A−2xysinAcosA+x
2
cos
2
A+y
2
sin
2
A+2xysinAcosA
\sf\: = {x}^{2} {sin}^{2}A + {y}^{2} {cos}^{2}A - \cancel{2xysinAcosA} + {x}^{2} {cos}^{2}A + {y}^{2} {sin}^{2}A + \cancel{ 2xysinAcosA}=x
2
sin
2
A+y
2
cos
2
A−
2xysinAcosA
+x
2
cos
2
A+y
2
sin
2
A+
2xysinAcosA
\sf \: = \: {x}^{2} {sin}^{2}A + {y}^{2} {cos}^{2}A + {x}^{2} {cos}^{2}A + {y}^{2} {sin}^{2}A = x
2
sin
2
A+y
2
cos
2
A+x
2
cos
2
A+y
2
sin
2
A
\sf \: = \: {x}^{2} ({sin}^{2}A + {cos}^{2}A )+ {y}^{2}( {cos}^{2}A +{sin}^{2}A) = x
2
(sin
2
A+cos
2
A)+y
2
(cos
2
A+sin
2
A)
We know,
\boxed{ \tt{ \: \: {sin}^{2}x + {cos}^{2}x = 1 \: \: }}
sin
2
x+cos
2
x=1
So, using this identity, we get
\rm \: = \: {x}^{2} \times 1 + {y}^{2} \times 1 = x
2
×1+y
2
×1
\sf \: = \: {x}^{2} + {y}^{2} = x
2
+y
2
Hence,
\boxed{ \tt{ \: {(xsinA - ycosA)}^{2} + {(xcosA + ysinA)}^{2} = {x}^{2} + {y}^{2} }}
(xsinA−ycosA)
2
+(xcosA+ysinA)
2
=x
2
+y
2
Additional Information:-
Relationship between sides and T ratios
sin θ = Opposite Side/Hypotenuse
cos θ = Adjacent Side/Hypotenuse
tan θ = Opposite Side/Adjacent Side
sec θ = Hypotenuse/Adjacent Side
cosec θ = Hypotenuse/Opposite Side
cot θ = Adjacent Side/Opposite Side
Reciprocal Identities
cosec θ = 1/sin θ
sec θ = 1/cos θ
cot θ = 1/tan θ
sin θ = 1/cosec θ
cos θ = 1/sec θ
tan θ = 1/cot θ
Co-function Identities
sin (90°−x) = cos x
cos (90°−x) = sin x
tan (90°−x) = cot x
cot (90°−x) = tan x
sec (90°−x) = cosec x
cosec (90°−x) = sec x
Fundamental Trigonometric Identities
sin²θ + cos²θ = 1
sec²θ - tan²θ = 1
cosec²θ - cot²θ = 1