Math, asked by shubham21324842, 1 year ago

(xtan y/x-ysec²y/x)dx+xsec²y/x dy=0​

Answers

Answered by Anonymous
6

Answer:

\large\bold\red{c = x( \csc \frac{2y}{x}   -  \cot \frac{2y}{x}  )}

Step-by-step explanation:

Given,

A differential equation,

  • (x \tan \frac{y}{x}  - y { \sec }^{2}   \frac{y}{x} )dx  + x { \sec }^{2}  \frac{y}{x} dy = 0

Further Solving,

We get,

 =  > x { \sec }^{2}  \frac{y}{x} dy =( y { \sec }^{2}  \frac{y}{x}  - x \tan \frac{y}{x} ) dx \\  \\  =  >  \frac{dy}{dx}  =  \frac{(y { \sec }^{2} \frac{y}{x}  - x \tan \frac{y}{x} )  }{x { \sec  }^{2} \frac{y}{x}  }  \\  \\  =  >  \frac{dy}{dx}  =  \frac{y}{x}  -  \sin \frac{y}{x}  \cos \frac{y}{x}  \\  \\  =  >  \frac{dy}{dx}    =  \frac{y}{x}  -  \frac{1}{2}  \times 2 \sin( \frac{y}{ x }) \cos( \frac{y}{x} )

But,

We know that,

  • 2 \sin( \alpha ) \cos( \alpha )   =  \sin(2 \alpha )

Therefore,

We get,

 =  >  \frac{dy}{dx}  =  \frac{y}{x}  -  \frac{ \sin( \frac{2y}{x} ) }{2}  \:  \:  \:  \:  \: .........(i)

Now,

Let's assume that,

y = vx

Differentiating both sides wrt x,

We get,

 =  >  \frac{dy}{dx}  = v + x \frac{dv}{dx}

Substituting these values in (i),

We get,

 =  > v + x \frac{dv}{dx}  = v -  \frac{ \sin(2v) }{2}  \\  \\  =  > x \frac {dv}{dx}  =  -  \frac{ \sin(2v) }{2}  \\  \\  =  > 2 \frac{dv}{ \sin(2v) } =  -  \frac{dx}{x}   \\  \\  =  > 2 \csc(2v) dv =  -  \frac{dx}{x}

Now,

Integrating both the sides,

We get,

 =  >2\int \csc(2v) dv =  - \int \frac{dx}{x}  \\  \\  =  > 2 \frac{ ln | \csc(2v)  -  \cot(2v) |  }{2}  =  -  ln(x)  +  ln(c)  \\  \\  =  >  ln( \csc(2v) -  \cot(2v)  )  +  ln(x)  =  ln(c)  \\  \\  =  >  ln(x( \csc2v -  \cot2v  ) ) =  ln(c)  \\  \\  =  > x( \csc2v -  \cot2v)  = c

Substituting the value of v,

We get,

The Solution of DE is,

 =  >  \large \bold{c = x( \csc \frac{2y}{x}   -  \cot \frac{2y}{x}  )}

Similar questions