Math, asked by Anonymous, 1 month ago

xy^2(1+xy)dx+x^2y(1-2xy)dy=0​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given Differential Equation is

\rm :\longmapsto\: {xy}^{2}(1 + xy)dx \:  +  \:  {yx}^{2} (1 - 2xy)dy = 0

can be rewritten as

\rm :\longmapsto\: y(1 + xy)dx \:  +  \:  x (1 - 2xy)dy = 0 -  -  - (1)

On comparing with,

\bf :\longmapsto\:Mdx \:  +  \: Ndy = 0

we get,

 \red{\rm :\longmapsto\:M = y(1 + xy) = y +  {xy}^{2} } \\  \red{\rm :\longmapsto\:N = x(1 - 2xy) = x -  {2yx}^{2} }

Consider,

\rm :\longmapsto\:\dfrac{\partial M}{\partial y}  = 1 + 2xy

and

\rm :\longmapsto\:\dfrac{\partial N}{\partial x}  = 1  -  4xy

\bf\implies \:\dfrac{\partial M}{\partial y}  \ne \: \dfrac{\partial N}{\partial x}

It means given equation is not exact Differential equation.

So, we have find Integrating Factor.

This Differential equation is of the form

\rm :\longmapsto\:yf(xy)dx \:  +  \: xg(xy)dy = 0

Its Integrating Factor, I.F. is

\rm :\longmapsto\:I.F.  = \dfrac{1}{Mx - Ny}

\rm \:  \:  =  \:  \: \dfrac{1}{x(y  +  {xy}^{2})  -  y(x -  {2yx}^{2})}

\rm \:  \:  =  \:  \: \dfrac{1}{xy  +  {x}^{2} {y}^{2}  -  yx  +  {2x}^{2} {y}^{2}}

\rm \:  \:  =  \:  \: \dfrac{1}{3 {x}^{2} {y}^{2} }

\bf\implies \:I.F.  = \dfrac{1}{3 {x}^{2} {y}^{2} }

Multiply equation (1) by I.F., we get

\rm :\longmapsto\: \dfrac{y}{3 {x}^{2} {y}^{2} }(1 + xy)dx \:  +  \:  \dfrac{x}{3 {x}^{2}  {y}^{2} }  (1 - 2xy)dy = 0

\rm :\longmapsto\:\bigg(\dfrac{1}{ {3yx}^{2} }  + \dfrac{1}{3x} \bigg)dx  + \bigg(\dfrac{1}{ {3xy}^{2} }  - \dfrac{2}{3y}  \bigg)dy  = 0

On comparing with,

\bf :\longmapsto\:Mdx \:  +  \: Ndy = 0

we get

 \red{\rm :\longmapsto\:M = \bigg(\dfrac{1}{ {3yx}^{2} }  + \dfrac{1}{3x} \bigg)} \\  \red{\rm :\longmapsto\:N = \bigg(\dfrac{1}{ {3xy}^{2} }  - \dfrac{2}{3y}  \bigg)}

Consider,

\rm :\longmapsto\:\dfrac{\partial M}{\partial y}  =  \dfrac{ - 1}{3 {x}^{2} {y}^{2}}

and

\rm :\longmapsto\:\dfrac{\partial N}{\partial x}  =  -  \dfrac{1}{3 {x}^{2}  {y}^{2} }

\bf\implies \:\dfrac{\partial M}{\partial y}   =  \: \dfrac{\partial N}{\partial x}

So equation is exact Differential equation,

Solution is given by

 \displaystyle \int_{taking \: y \: constant} \sf \: M \: dx +  \int_{term \: not \: having \: x}Ndy = c

 \displaystyle \int_{taking \: y \: constant} \sf \: \bigg(\dfrac{1}{ {3yx}^{2} }  + \dfrac{1}{3x} \bigg) \: dx +  \int_{term \: not \: having \: x}\bigg(  - \dfrac{2}{3y}  \bigg)dy = c

\rm :\longmapsto\: -  \:  \dfrac{1}{3xy} +  \dfrac{1}{3} \: logx    -  \dfrac{2}{3} \: logy = c

Similar questions