Math, asked by alpha3025, 4 months ago

(xy^2+x)dx=x^2y+ydySolve for differential equation​

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

(x {y}^{2}  + x)dx = ( {x}^{2} y + y)dy \\

 \implies \: x( {y}^{2}  + 1)dx = y( {x}^{2}  + 1)dy \\

 \implies \frac{2x}{ {x}^{2}  + 1} dx =  \frac{2y}{ {y}^{2} + 1 } dy \\

Integrating both sides,

 \implies  \int\frac{2x}{ {x}^{2}  + 1} dx =   \int\frac{2y}{ {y}^{2} + 1 } dy \\

 \implies ln( {x}^{2}  + 1)  =  ln( {y}^{2}  + 1)  + c \\

 \implies {x}^{2}  + 1 =  {e}^{c}( {y}^{2}   + 1) \\

 \implies \frac{ {x}^{2} + 1 }{ {y}^{2} + 1 }  =  k\\

Similar questions