Math, asked by innamarygracemancio, 3 months ago

xy'=3y-6x^2
linear equation differential equation​

Answers

Answered by mathdude500
7

Working Rule :-

Let us consider a linear differential equation

\rm :\longmapsto\:\dfrac{dy}{dx} + py = q \:  \: where \: p \: and \: q \in \: f(x)

Step :- 1 :- Find Integrating Factor, I. F.

\rm :\longmapsto\:I. F.  =  {e}^{ \: \int p \: dx}

Step :- 2, Solution of differential equation is

\rm :\longmapsto\:y \times I. F.  =  \int \: (q \times I. F.) dx

Formula Used :-

\red{ \boxed{ \displaystyle \sf \:  \int\dfrac{1}{x}dx  =  log(x)  + c}}

\red{ \boxed{ \displaystyle \sf \:  \int \:  {x}^{n} dx = \dfrac{ {x}^{n + 1} }{n + 1}   + c}}

\red{ \boxed{ \sf \:  {e}^{logx} = x}}

Let's solve the problem now!!!

Given differential equation is

\rm :\longmapsto\:x\dfrac{dy}{dx} = 3y - 6 {x}^{2}

can be rewritten as

\rm :\longmapsto\:x\dfrac{dy}{dx} -  3y  =  \: -  \: 6 {x}^{2}

On dividing by 'x' both sides, we get

\rm :\longmapsto\:\dfrac{dy}{dx} -  \dfrac{3}{x} \: y   =  \: -  \: 6 {x}

So,

On comparing with

\rm :\longmapsto\:\dfrac{dy}{dx} + py = q \:  \:

we get

 \red{\rm :\longmapsto\:p =  -  \: \dfrac{3}{x}} \\\red{\rm :\longmapsto\:q =  -  \: 6x}

Integrating Factor

\rm :\longmapsto\:I. F.  =  {e}^{ \int \: pdx}

\rm :\longmapsto\:I. F.  =  {e}^{ \displaystyle \int \:  -  \:  \dfrac{3}{x} dx}

\rm :\longmapsto\:I. F.  =  {e}^{ - 3 \: logx}

\rm :\longmapsto\:I. F.  =  {e}^{\: log {x}^{ - 3} }

\rm :\longmapsto\:I. F.  =   {x}^{ - 3}

Thus,

Solution of differential equation is

\rm :\longmapsto\:y \times I. F.  =  \int \: (q \times I. F.) dx

\rm :\longmapsto\:y \times  {x}^{ - 3}   =  \int \: ( - 6x \times  {x}^{ - 3} ) dx

\rm :\longmapsto\:y \times  {x}^{ - 3}   =   - 6 \: \int \:  {x}^{ - 2} dx

\rm :\longmapsto\:y \times  {x}^{ - 3}   =   - 6 \:  \dfrac{ {x}^{ - 2 + 1} }{ - 2 + 1} + c

\rm :\longmapsto\:y \times  {x}^{ - 3}   =   - 6 \:  \dfrac{ {x}^{ - 1} }{ - 1} + c

\rm :\longmapsto\:y \times  {x}^{ - 3}   =   \dfrac{6 }{x} + c

\rm :\longmapsto\:y   =   \dfrac{6 }{ {x}^{2} } + {c}{ {x}^{3}}

Similar questions