xy and x'y' are two parallel
tangents to a circle with centre
o and another tangent AB with
point of contact ç intersecting XY at A and X'Y' at B. prove that LAOB = 90°
Answers
Answer:
Consider the problem
Let us join point O to C
In ΔOPAandΔOCA
OP=OC (Radii of the same circle)
AP=AC (Tangent from point A)
AO=AO (Common side)
ΔOPA≅ΔOCA (SSS congruence criterion)
Therefore, P↔C,A↔A,O↔O
∠POA=∠COA.........(1)
Similarly,
∠QOB≅∠OCB
∠QOB=∠COB.........(2)
Since,POQ is a diameter of the circle, it is a straight line.
Therefore, ∠POA+∠COA+∠COB+∠QOB=180
∘
So, from equation (1) and equation (2)
2∠COA+2∠COB=180
∘
∠COA+∠COB=90
∘
∠AOB=90
∘
Step-by-step explanation:
Answer:
• Qᴜᴇꜱᴛɪᴏɴ :
xʏ ᴀɴᴅ x'ʏ' ᴀʀᴇ ᴛᴡᴏ ᴘᴀʀᴀʟʟᴇʟ ᴛᴀɴɢᴇɴᴛꜱ ᴛᴏ ᴀ ᴄɪʀᴄʟᴇ ᴡɪᴛʜ ᴄᴇɴᴛʀᴇ ᴏ ᴀɴᴅ ᴀɴᴏᴛʜᴇʀ ᴛᴀɴɢᴇɴᴛ ᴀʙ ᴡɪᴛʜ ᴘᴏɪɴᴛ ᴏꜰ ᴄᴏɴᴛᴀᴄᴛ ᴄ ɪɴᴛᴇʀꜱᴇᴄᴛɪɴɢ xʏ ᴀᴛ ᴀ ᴀɴᴅ x'ʏ' ᴀᴛ ʙ. ᴘʀᴏᴠᴇ ᴛʜᴀᴛ ∠ᴀᴏʙ = 90°.
• ᴀɴꜱᴡᴇʀ :
• ɢɪᴠᴇɴ:
ᴡᴇ ʜᴀᴠᴇ ʙᴇᴇɴ ɢɪᴠᴇɴ ᴛʜᴀᴛ xʏ ᴀɴᴅ x'ʏ' ᴀʀᴇ ᴛᴡᴏ ᴘᴀʀᴀʟʟᴇʟ ᴛᴀɴɢᴇɴᴛꜱ ᴛᴏ ᴀ ᴄɪʀᴄʟᴇ ᴡɪᴛʜ ᴄᴇɴᴛʀᴇ ᴏ.
ᴀɴᴅ ᴀɴᴏᴛʜᴇʀ ᴛᴀɴɢᴇɴᴛ ᴀʙ ᴡɪᴛʜ ᴘᴏɪɴᴛ ᴏꜰ ᴄᴏɴᴛᴀᴄᴛ ᴄ ɪɴᴛᴇʀꜱᴇᴄᴛɪɴɢ xʏ ᴀᴛ ᴀ ᴀɴᴅ x'ʏ' ᴀᴛ ʙ.
• ᴛᴏ ᴘʀᴏᴠᴇ:
ᴡᴇ ɴᴇᴇᴅ ᴛᴏ ᴘʀᴏᴠᴇ ᴛʜᴀᴛ ∠ᴀᴏʙ = 90°.
•ᴄᴏɴꜱᴛʀᴜᴄᴛɪᴏɴ:
ᴊᴏɪɴ ᴏᴄ
• ꜱᴏʟᴜᴛɪᴏɴ:
ᴡᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ ᴛʜᴇ ᴛᴀɴɢᴇɴᴛꜱ ᴅʀᴀᴡɴ ᴛᴏ ᴀ ᴄɪʀᴄʟᴇ ꜰʀᴏᴍ ᴀɴ ᴇxᴛᴇʀɴᴀʟ ᴘᴏɪɴᴛ ᴀʀᴇ ᴇQᴜᴀʟ.
ᴛʜᴇʀᴇꜰᴏʀᴇ, ᴀᴘ = ᴀᴄ_____(1)
ɴᴏᴡ, ɪɴ Δᴘᴀᴏ ᴀɴᴅ Δᴄᴀᴏ, ᴡᴇ ʜᴀᴠᴇ
ᴀᴏ = ᴀᴏ [ᴄᴏᴍᴍᴏɴ]
ᴏᴘ = ᴏᴄ [ʀᴀᴅɪɪ ᴏꜰ ᴛʜᴇ ꜱᴀᴍᴇ ᴄɪʀᴄʟᴇ]
ᴀᴘ = ᴀᴄ [ꜰʀᴏᴍ ᴇQᴜᴀᴛɪᴏɴ 1]
=> Δᴘᴀᴏ ≅ Δᴀᴏᴄ ʙʏ ꜱꜱꜱ ᴄᴏɴɢʀᴜᴇɴᴄʏ ᴄʀɪᴛᴇʀɪᴀ.
∴ ∠ᴘᴀᴏ = ∠ᴄᴀᴏ
=> ∠ᴘᴀᴄ = 2∠ᴄᴀᴏ_____(2)
ꜱɪᴍɪʟᴀʀʟʏ, ᴡᴇ ʜᴀᴠᴇ ∠ᴄʙQ= 2∠ᴄʙᴏ__(3)
ᴡᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ ᴛʜᴀᴛ ꜱᴜᴍ ᴏꜰ ᴀɴɢʟᴇꜱ ᴏɴ ᴛʜᴇ ꜱᴀᴍᴇ ꜱɪᴅᴇ ᴏꜰ ᴛʀᴀɴꜱᴠᴇʀꜱᴀʟ ɪꜱ 180°.
∴ ∠ᴘᴀᴄ + ∠ᴄʙQ = 180°
=> 2∠ᴄᴀᴏ + 2∠ᴄʙᴏ = 180° [ꜰʀᴏᴍ 2 & 3]
=> ∠ᴄᴀᴏ + ∠ᴄʙᴏ = 180/2 = 90°____(4)
ɴᴏᴡ, ɪɴ Δᴀᴏʙ, ᴡᴇ ʜᴀᴠᴇ
∠ʙᴀᴏ + ∠ᴀʙᴏ + ∠ᴀᴏʙ = 180° [ᴀɴɢʟᴇ ꜱᴜᴍ ᴘʀᴏᴘᴇʀᴛʏ ᴏꜰ ᴀ ᴛʀɪᴀɴɢʟᴇ]
ꜰʀᴏᴍ ᴇQᴜᴀᴛɪᴏɴ 4, ᴡᴇ ʜᴀᴠᴇ
∠ᴄᴀᴏ + ∠ᴄʙᴏ + ∠ᴀᴏʙ = 180°
=> 90° + ∠ᴀᴏʙ = 180°
=> ∠ᴀᴏʙ = 180° - 90°
=> ∠ᴀᴏʙ = 90°
ᴛʜᴇʀᴇꜰᴏʀᴇ, ∠ᴀᴏʙ = 90°.
ʜᴇɴᴄᴇ ᴘʀᴏᴠᴇᴅ!!