Math, asked by jennifermariajoumuns, 5 months ago

xy=e^x-y. Find dy/dx.​

Answers

Answered by Asterinn
4

Given :

xy =  {e}^{x}  - y

To find :

 \dfrac{dy}{dx}

Solution :

 \implies \: xy =  {e}^{x}  - y

differentiating both sides :-

\implies \:  \dfrac{d(xy)}{dx} = \dfrac{d({e}^{x}  - y)}{dx}

We will differentiate LHS using product rule.

 \implies \: y \dfrac{dx}{dx}  + x\dfrac{dy}{dx} =  \dfrac{d( {e}^{x}) }{dx}  + \dfrac{dy}{dx}

\implies \: y   + x\dfrac{dy}{dx} =  \dfrac{d( {e}^{x}) }{dx}  +  \dfrac{dy}{dx}

\implies \: y   + x\dfrac{dy}{dx} =  {e}^{x}  +  \dfrac{dy}{dx}

\implies \:  x\dfrac{dy}{dx}  - \dfrac{dy}{dx} =  {e}^{x}   - y

\implies \:  (x  - 1) \dfrac{dy}{dx}=  ({e}^{x}   - y)

\implies \:   \dfrac{dy}{dx}=  ({e}^{x}   - y) \times  \dfrac{1}{(x  - 1)}

\implies \:   \dfrac{dy}{dx}=   \dfrac{  {e}^{x}   - y}{x  - 1}

Answer :

\dfrac{dy}{dx}=   \dfrac{  {e}^{x}   - y}{x  - 1}

___________________

\large\bf\blue{Additional-Information}

d(sinx)/dx = cosx

d(cos x)/dx = -sin x

d(cosec x)/dx = -cot x cosec x

d(tan x)/dx = sec²x

d(sec x)/dx = secx tanx

d(cot x)/dx = - cosec² x

__________________________

Similar questions