Math, asked by meenakshinikita25, 4 months ago

y=√1-2x/1+2x find dy/dx​

Answers

Answered by lspfdnr
1

Step-by-step explanation:

y=(2x+1)^1/3

dy/dx = 1/3 (2x+1)^1/3

=1/3 (2x+1)^-2/3

= 1/3(2x+1)^2/3

=1/3√(2x+1)^2

Answered by brokendreams
0

The Derivative of y = \frac{\sqrt{1-2x}}{2x+1} is  \frac{dy}{dx} = \frac{2x-3}{\sqrt{1-2x}\left(2x+1\right)^2}

Step-by-step explanation:

Given: y = \frac{\sqrt{1-2x}}{2x+1}

To Find: Derivative \frac{dy}{dx}

Solution:

  • Finding derivative of \frac{\sqrt{1-2x}}{2x+1}

We have the function, y = \dfrac{\sqrt{1-2x}}{2x+1} such that the derivative will be as follows,

\dfrac{dy}{dx} = \dfrac{d}{dx} \Big(\dfrac{\sqrt{1-2x}}{2x+1} \Big)

Applying the quotient rule of differentiation, we get

\Rightarrow \dfrac{dy}{dx} = \dfrac{\Big(\dfrac{d}{dx} (\sqrt{1-2x} ) \Big) \cdot (2x+1) - (\sqrt{1-2x} ) \cdot  \Big(\dfrac{d}{dx} (2x+1) \Big)}{(2x+1)^2}

\Rightarrow \dfrac{dy}{dx} = \dfrac{\dfrac{1}{2} ({1-2x} )^{\frac{1}{2}-1 } \cdot \Big(\dfrac{d}{dx} ({1-2x} ) \Big) \cdot (2x+1) - (\sqrt{1-2x} ) \cdot  \Big(2\dfrac{d(x)}{dx} + \dfrac{d(1)}{dx} \Big)}{(2x+1)^2}

Solving it further, we get

\Rightarrow \dfrac{dy}{dx}  = \dfrac{-\frac{2x+1}{\sqrt{1-2x}}-2\sqrt{1-2x}}{\left(2x+1\right)^2}

Simplifying and calculating the above expression, we get

\Rightarrow \dfrac{dy}{dx} = \dfrac{2x-3}{\sqrt{1-2x}\left(2x+1\right)^2}

Hence, the Derivative of y = \frac{\sqrt{1-2x}}{2x+1} is  \frac{dy}{dx} = \frac{2x-3}{\sqrt{1-2x}\left(2x+1\right)^2}

Similar questions