Math, asked by jhremruata9, 1 month ago

y=1/2x-3/2 or 2y-x+3=0,​

Answers

Answered by xSoyaibImtiazAhmedx
1

Given ,

 \bold {\: \:  \:  • \: y \:  =  \frac{1}{2x}  -  \frac{3}{2} } \:  \:  -  -  - (1)

\bold {\: \:  \:  • \: 2y - x + 3\:  =  0 } \:  \:  -  -  - (2)

To find :—

  • Value of x and y

Putting the value of y in eq(2) , we have

 \:  \:  \:  \bold{2 \times  (\frac{1}{2x}  -  \frac{3}{2} ) - x + 3 = 0}

 \implies \:  \:  \:  \bold{2 \times  ( \frac{2 - 6x}{4x}  ) - x + 3 = 0}

 \implies \:  \:  \:  \bold{2 \times  2 \times ( \frac{1 - 3x}{4x}  ) - x + 3 = 0}

 \implies \:  \:  \:  \bold{ ( \frac{1 - 3x}{x}  ) - x + 3 = 0}

\implies \:  \:  \:  \bold{ \frac{1 - 3x -  {x}^{2} + 3x }{x} =0 }

\implies \:  \:  \:  \bold{ \frac{1 -  {x}^{2} }{x}  = 0}

\implies \:  \:  \:  \bold{1 -  {x}^{2} }  = 0

\implies \:  \:  \:  \bold {{x}^{2} = 1}

\implies \:  \:  \:  \bold {{x}^{} =  \sqrt{1} }

\implies \:  \:  \:   \boxed{\bold {{x}^{} =  ±{1} }}

* If x = 1, then

~ 2y - 1 + 3 = 0 { from eq(2)}

2y + 2 = 0

2y = -2

y = -2/2

\boxed{\bold{y\:=-1}}

* If x = -1 , then

~ 2y - (-1) + 3 = 0

2y + 1 + 3 = 0

2y + 4 = 0

2y = -4

y = -4/2

\boxed{\bold{y\:=-2}}

★ So, the value of x and y are 1 , -1 and -1 , 2 respectively .

Similar questions