Physics, asked by deepanshsoni74, 8 months ago

y=1/2x+3 then dy/dx at x=0 is |2/n| find the value of n

Answers

Answered by MoUbaid
1

Answer:4/ln(3)

Explanation:If Y =1/2x +3 then dy/dx = 1/2 ln(2x +3) , so 1/2 ln (2x+3) = 2/n . At x =0 , 1/2 ln(3) = 2/n ,n = 4 /ln(3)

Answered by payalchatterje
0

Answer:

Required value of n is -9.

Explanation:

Given

y =  \frac{1}{2x + 3}

y =  {(2x + 3)}^{ - 1}

we are differentiating y with respect to x,

 \frac{dy}{dx}  =  \frac{d}{dx}  {(2x + 3)}^{ - 1}

 \frac{dy}{dx}  =(  - 1)  {(2x + 3)}^{ - 2}  \frac{d}{dx} (2x + 3)

 \frac{dy}{dx}  =  -  {(2x + 3)}^{ - 2}  \times 2

Here we are putting x=0,

Then  \frac{dy}{dx}  =  -  {(2 \times 0 + 3)}^{ - 2}  \times 2 =  - 2 \times  {3}^{ - 2}  =  - 2 \times  \frac{1}{9}  =  -  \frac{2}{9}

Given when x= 0,

 \frac{dy}{dx}  =  | \frac{2}{n} |

According to question,

 | \frac{2}{n} |  =  -  \frac{2}{9}

 \frac{2}{n}  =  -  \frac{2}{9}

By cross multiplication,

2 \times 9 =  - 2 \times n

n =  -  \frac{2 \times 9}{2}  =  - 9

Required value of n is -9.

Here applied formulas are \frac{d}{dx} ( {x}^{n} ) = n {x}^{n - 1}

 \frac{d}{dx}  {(ax)}^{n}  = n {(ax)}^{ n - 1}  \frac{d}{dx} (ax) = n {(ax)}^{ n - 1}  \times a

Some other formulas of derivative,

1. \frac{d}{dx} ( \sin(x) ) =  \cos(x  )  \\ 2. \frac{d}{dx} ( \cos(x) ) =  -  \sin(x)  \\ 3. \frac{d}{dx} ( \tan(x) ) =  {sec}^{2} x \\ 4. \frac{d}{dx} ( \cot(x) ) =  -  {cosec}^{2} x \\ 5. \frac{d}{dx} ( \sec(x) ) =  \sec(x)  \tan(x)  \\ 6. \frac{d}{dx} (cosec(x)) =  - cosecxcotx

Similar questions