Math, asked by sandhyaranisen58, 7 months ago

y - 1
(i) If log x + log y = log (x + y), then x =
(ii) If 2 log a + 3 log 6 - 2 = 0, then a²b3 = 100​

Answers

Answered by Anonymous
4

{\red {{\bold{ \huge \dag }}\bold {\huge{{\mathcal {\underline{Answer}}}} \dag}}}

 \star \:  \underline \blue{solution} \blue{ : }

QUESTION NO 1.

 \bold{ log(x)  +  log(y)  =  log(x + y) }

 \longrightarrow \: log(xy) =  log(x + y)

 \longrightarrow \: xy = x + y

 \longrightarrow \: x(y - 1) = y

 \longrightarrow {\boxed {\mathfrak { x = \frac{y}{y - 1} }}}

QUESTION NO 2.

 \bold {\boxed{I  \: guess  \: your \:  question \:  is \: 2 \:  log(a)   + 3  \: log(b)  - 2 = 0}}

 \star \:  \:  \underline \blue{given} \blue{ : }

2 \:  log(a)   + 3  \: log(b)  - 2 = 0

 \star \:  \:  \underline \blue{prove} \blue{ : }

 {a}^{2}  {b}^{3}  = 100

 \star \:  \:  \underline \blue{solution} \blue{ : }

 \bold{2 \:  log(a)   + 3  \: log(b)  - 2 = 0}

 \longrightarrow \:  log( {a}^{2} )   +  log( {b}^{3} )  = 2

 \longrightarrow \: log( {a}^{2}  {b}^{3} ) = 2 log(10)

 \longrightarrow \: log( {a}^{2}  {b}^{3} ) =  log( {10}^{2} )

 \longrightarrow \:  \bold{\boxed {\mathfrak{{a}^{2}  {b}^{3}  = 100}}} Proved

Similar questions