Math, asked by rishabhsingh77pa928z, 1 year ago

y = √1-sin2x/1+sin2x differentiation

Answers

Answered by Pitymys
43

Here we have to find the derivative,

 \frac{dy}{dx}  where  y=\sqrt{\frac{1-\sin 2x}{1+\sin 2x}}   .

Note that

 1-\sin 2x=\sin ^2x+\cos^2 x-2\sin x\cos x=(\sin x-\cos x)^2\\<br />1+\sin 2x=\sin ^2x+\cos^2 x+2\sin x\cos x=(\sin x+\cos x)^2

Thus,

 y=\sqrt{\frac{(\sin x-\cos x)^2}{(\sin x+\cos x)^2}}  \\<br />y=\pm \frac{\sin x-\cos x}{\sin x+\cos x}

Differentiating,

 \frac{dy}{dx}=\pm \frac{d}{dx}(\frac{\sin x-\cos x}{\sin x+\cos x}  )\\<br />\frac{dy}{dx}=\pm \frac{(\sin x+\cos x)^2-(\sin x-\cos x)^2}{(\sin x+\cos x)^2}  \\<br />\frac{dy}{dx}=\pm \frac{4\sin x\cos x}{(\sin x+\cos x)^2}  \\<br />\frac{dy}{dx}=\pm \frac{2\sin 2x}{1+\sin 2x}

Similar questions