y=1-sinx/1+sinx in differentiate
Answers
Answered by
1
Step-by-step explanation:
y = (1-sinx)/(1+sinx)
division rule :-
d(v/u)/dx = (udv/dx - vdu/dx)/u^2
d(1-sinx/1+sinx)/dx = [(1+sinx){d(1-sinx)/dx} - (1-sinx){d(1+sinx)/dx}] / (1+sinx)^2
d(1-sinx/1+sinx)/dx = {-cosx(1+sinx)-cosx(1-sinx)}/(1+sinx)^2
d(1-sinx/1+sinx)/dx = -2cosx / (1+sinx)^2
dy/dx = -2cosx / (1+sinx)^2
Similar questions