y=1+sinx°/1-sinx°differentiate with respect to x
Answers
To Differentiate :
Here we use the formula :
solution
To Differentiate :
\begin{lgathered}\bold{y = \frac{1 + \sin x}{1 - \sin x} }\\\end{lgathered}
y=
1−sinx
1+sinx
Here we use the formula :
\begin{lgathered}\boxed{ \bold{ \star \: \frac{d}{dx} (\frac{u}{v} ) = \frac{v \: \frac{du}{dx} - u \: \frac{dv}{dx} }{ {v}^{2} } }} \\ \\ \star \bold{ \frac{d}{dx} ( \sin x) = \cos x} \\ \\ \star \boxed { \bold{\frac{d}{dx} (constant) = 0}}\end{lgathered}
⋆
dx
d
(
v
u
)=
v
2
v
dx
du
−u
dx
dv
⋆
dx
d
(sinx)=cosx
⋆
dx
d
(constant)=0
\begin{lgathered}\implies \: \frac{dy}{dx} = \frac{d}{dx} ( \frac{1 + \sin x}{1 - \sin x} ) \\ \\ \implies \: \frac{dy}{dx} = \frac{(1 - \sin x )\frac{d}{dx} (1 + \sin x) - (1 + \sin x) \frac{d}{dx} (1 - \sin x) }{( {1 - \sin x)}^{2} } \\ \\ \implies \frac{dy}{dx} = \frac{(1 - \sin x)(0 + \cos x) - (1 + \sin x)(0 - \cos x)}{(1 - \sin x) ^{2} } \\ \\ \implies \frac{dy}{dx} = \frac{ \cos x - \cancel{ \sin x \cos x }+ \cos x + \cancel{ \sin x \cos x}}{ {(1 - \sin x)}^{2} } \\ \\ \implies \: \frac{dy}{dx} = \frac{2 \cos x}{( {1 - \sin x)}^{2} }\end{lgathered}
⟹
dx
dy
=
dx
d
(
1−sinx
1+sinx
)
⟹
dx
dy
=
(1−sinx)
2
(1−sinx)
dx
d
(1+sinx)−(1+sinx)
dx
d
(1−sinx)
⟹
dx
dy
=
(1−sinx)
2
(1−sinx)(0+cosx)−(1+sinx)(0−cosx)
⟹
dx
dy
=
(1−sinx)
2
cosx−
sinxcosx
+cosx+
sinxcosx
⟹
dx
dy
=
(1−sinx)
2
2cosx