Math, asked by yeasin2618, 10 months ago

Y=(1/x^2+3)^2 diffrentiation

Answers

Answered by BendingReality
6

Answer:

\displaystyle \sf \longrightarrow -\frac{12x^2+4}{x^5} \\ \\

Step-by-step explanation:

Given :

\displaystyle \sf y= \left(\frac{1}{x^2} +3\right)^2 \\ \\

We have to find y' :

Apply chain and power rule of differentiation :

Diff. w.r.t. x :

\displaystyle \sf \longrightarrow y'=2. \left(\frac{1}{x^2} +3\right)^{2-1}. \left(\frac{1}{x^2} +3\right)' \\ \\

\displaystyle \sf \longrightarrow y'=2. \left(\frac{1}{x^2} +3\right)^{}. \left(x^{-2} +3\right)' \\ \\

\displaystyle \sf \longrightarrow y'=2. \left(\frac{1}{x^2} +3\right)^{}. \left(-2.x^{-2-1} +0\right) \\ \\

\displaystyle \sf \longrightarrow y'=-2. \left(\frac{1}{x^2} +3\right)^{}. \left(2.x^{-3} \right) \\ \\

\displaystyle \sf \longrightarrow y'=\frac{-4. \left(\dfrac{1}{x^2} +3\right)}{x^{-3} }\\ \\

\displaystyle \sf \longrightarrow y'=-\frac{12x^2+4}{x^5} \\ \\

Hence we get required answer.

Similar questions