y+1/y=12then y3+1/y3=
Answers
Answered by
17
Given y + 1/y = 12. ------ (1)
On Squaring both sides, we get
We know that (a + b)^2 = a^2 + b^2 + 2ab.
Then (y + 1/y)^2 = (12)^2
y^2 + 1/y^2 + 2 * 1/y = 144
y^2 + 1/y^2 + 2 = 144
y^2 + 1/y^2 = 144 - 2
y^2 + 1/y^2 = 142. ----------- (1)
Given y^3 + 1/y^3.
We know that a^3 + b^3 = (a+b)(a^2 +b^2 - ab)
Here a = y^3, b= 1/y.
y^3 + 1/y^3 = (y+1/y)(y^2 + 1/y^2 - y * 1/y)
= (y + 1/y)(y^2 + 1/y^2 - 1)
= (12)(142 - 1) (From (1) and (2))
= 12 * 141
= 1692.
Therefore y^3 + 1/y^3 = 1692.
Hope this helps!
On Squaring both sides, we get
We know that (a + b)^2 = a^2 + b^2 + 2ab.
Then (y + 1/y)^2 = (12)^2
y^2 + 1/y^2 + 2 * 1/y = 144
y^2 + 1/y^2 + 2 = 144
y^2 + 1/y^2 = 144 - 2
y^2 + 1/y^2 = 142. ----------- (1)
Given y^3 + 1/y^3.
We know that a^3 + b^3 = (a+b)(a^2 +b^2 - ab)
Here a = y^3, b= 1/y.
y^3 + 1/y^3 = (y+1/y)(y^2 + 1/y^2 - y * 1/y)
= (y + 1/y)(y^2 + 1/y^2 - 1)
= (12)(142 - 1) (From (1) and (2))
= 12 * 141
= 1692.
Therefore y^3 + 1/y^3 = 1692.
Hope this helps!
Similar questions