Math, asked by anil552, 1 year ago

y +1/y= 4 then y^3-1/y^3=?​

Answers

Answered by sivaprasath
9

Answer:

y^3 - \frac{1}{y^3} = 30\sqrt{3}

Step-by-step explanation:

Given :

y+\frac{1}{y} = 4

Find :

y^3 - \frac{1}{y^3}

Solution :

We know that,

y+\frac{1}{y} = 4

By squaring both the sides,

y^2 + 2(y)(\frac{1}{y}) + (\frac{1}{y})^2 = (4)^2

y^2 + \frac{1}{y^2} + 2 = 16

By subtracting 4 both the sides,

We get,

y^2 + \frac{1}{y^2} + 2 - 4 = 16 - 4

y^2 + \frac{1}{y^2} - 2 = 12

y^2 + \frac{1}{y^2} - 2(y)(\frac{1}{y}) = 12

(y - \frac{1}{y})^2 = 12

y - \frac{1}{y} = \sqrt{12} = \sqrt{4 \times 3} = 2\sqrt{3}

y - \frac{1}{y} = 2\sqrt{3}

By cubing both the sides,

We get,

(y - \frac{1}{y})^3 = (2\sqrt{3})^3

y^3 - 3(y)(\frac{1}{y})(y - \frac{1}{y}) - \frac{1}{y^3} = 24\sqrt{3}

y^3 - 3(y - \frac{1}{y}) - \frac{1}{y^3} = 24\sqrt{3}

y^3 - \frac{1}{y^3} = 24\sqrt{3} + 3(y - \frac{1}{y})

y^3 - \frac{1}{y^3} = 24\sqrt{3} + 3(2\sqrt{3})

y^3 - \frac{1}{y^3} = 24\sqrt{3} + 6\sqrt{3}

y^3 - \frac{1}{y^3} = 30\sqrt{3}


sivaprasath: No
Similar questions