Math, asked by archismanjha, 1 year ago

Y = 10 ^ (( 1/( 1 - log X base 10)) and Z = 10 ^ (( 1/ ( 1- log y base 10 ) then prove that X = 10^[ 1/ ( 1- log Z base 10)]​


Swarup1998: Solved! :)

Answers

Answered by Swarup1998
29
\underline{\text{Solution :}}

\mathrm{Given,\:Y=10^{\frac{1}{1-log_{10}X}}}

\to \mathrm{log_{10}Y=log_{10}10^{\frac{1}{1-log_{10}X}}}

\to \mathrm{log_{10}Y=\frac{1}{1-log_{10}X}\:...(i)}

\mathrm{and\:Z=10^{\frac{1}{1-log_{10}Y}}}

\to \mathrm{log_{10}Z=log_{10}10^{\frac{1}{1-log_{10}Y}}}

\to \mathrm{log_{10}Z=\frac{1}{1-log_{10}Y}}

\to \mathrm{log_{10}Z=\frac{1}{1-\frac{1}{1-log_{10}X}}\:by\:(i)}

\to \mathrm{1-\frac{1}{1-log_{10}X}=\frac{1}{log_{10}Z}}

\to \mathrm{\frac{1}{1-log_{10}X}=1-\frac{1}{log_{10}Z}}

\to \mathrm{\frac{1}{1-log_{10}X}=\frac{log_{10}Z-1}{log_{10}Z}}

\to \mathrm{1-log_{10}X=\frac{log_{10}Z}{log_{10}Z-1}}

\to \mathrm{log_{10}X=1-\frac{log_{10}Z}{log_{10}Z-1}}

\to \mathrm{log_{10}X=\frac{log_{10}Z-1-log_{10}Z}{log_{10}Z-1}}

\to \mathrm{log_{10}X=\frac{-1}{log_{10}Z-1}}

\to \mathrm{log_{10}X=\frac{1}{1-log_{10}Z}}

\to \mathrm{10^{log_{10}X}=10^{\frac{1}{1-log_{10}Z}}}

\to \boxed{\mathrm{X=10^{\frac{1}{1-log_{10}Z}}}}

\text{Hence, proved.}

Swarup1998: Give me some time to complete the answer. :)
sakshi7048: awesome answer :)
Swarup1998: :-)
nain31: arey wahh!! :)
Swarup1998: :p
nain31: :P
Anonymous: swarup bhai aap bahot hi achha answer dete ho (^^")
Swarup1998: :-))
nain31: (σ≧▽≦)σ
Answered by prosenjt86
0

Answer:

See photos.

Step-by-step explanation:

If i am correct, marked me as a brainilist.

Attachments:
Similar questions