Science, asked by BrainlyXQueen, 8 months ago

y = (17 - x)(19 - x)(19 + x)(17 + x), when x is real, then the smallest possible value of 'y' is​

Answers

Answered by Intelligentcat
222

Answer:

\Large{\boxed{\underline{\overline{\mathfrak{\star \: QuEsTiOn:- \: \star}}}}}

 \large{ \sf{y = (17 - x)(19 - x)(19 + x)(17 - x)}}

p,

\huge\underline{\overline{\mid{\bold{\pink{ANSWER-}}\mid}}}

Given Equation,

 \large{ \sf{y = (17 - x)(19 - x)(19 + x)(17 - x)}}

Of the form,

a² - b² = (a + b)(a - b)

 \implies \:  \sf{y = ( {17}^{2}  - x {}^{2} )( {19}^{2} -  {x}^{2} )  } \\  \\  \implies \:  \sf{y = (289 -  {x}^{2})(361 -  {x}^{2} ) } \\  \\   \large{\implies \:  \boxed{ \boxed{\sf{y = 104329 - 650 +  {x}^{2} }}}}

For smallest possible value of y,x should be equal to 0

 \longrightarrow \:  \sf{y = 104329}

Note

The negative integer,it would be converted into a positive numerical by the square function of x. Thus x = 0.

Answered by Anonymous
24

Answer:

\Large{\boxed{\underline{\overline{\mathfrak{\star \: QuEsTiOn:- \: \star}}}}}

 \large{ \sf{y = (17 - x)(19 - x)(19 + x)(17 - x)}}

p,

\huge\underline{\overline{\mid{\bold{\pink{ANSWER-}}\mid}}}

Given Equation,

 \large{ \sf{y = (17 - x)(19 - x)(19 + x)(17 - x)}}

Of the form,

a² - b² = (a + b)(a - b)

 \implies \:  \sf{y = ( {17}^{2}  - x {}^{2} )( {19}^{2} -  {x}^{2} )  } \\  \\  \implies \:  \sf{y = (289 -  {x}^{2})(361 -  {x}^{2} ) } \\  \\   \large{\implies \:  \boxed{ \boxed{\sf{y = 104329 - 650 +  {x}^{2} }}}}

For smallest possible value of y,x should be equal to 0

 \longrightarrow \:  \sf{y = 104329}

Note

The negative integer,it would be converted into a positive numerical by the square function of x. Thus x = 0.

Similar questions