Physics, asked by adibobade04, 1 month ago

y=1nx/x^2+5x.differencate​

Answers

Answered by Anonymous
5

Answer:

(x + 5) - (lnx)(2x + 5)/(x² + 5x)²

Explanation:

As per the information provided in the question, We have

  • y = lnx/x² + 5x

We are asked to find dy/dx.

In order to find dy/dx, We will Differentiate using qoutient rule.

It is given by –

 {\longmapsto \rm \dfrac{d}{dx}(y) =  \dfrac{d}{dx}   \bigg( \dfrac{u}{v}\bigg) = \dfrac{ v \dfrac{d}{dx} (u) - u \dfrac{d}{dx} (v)}{ {(v)}^{2} }}

Where,

  • u = lnx
  • v = x² + 5x

Substituting the values.

{ \longmapsto \rm \dfrac{d}{dx}(y) = \dfrac{ ( {x}^{2} + 5x)  \dfrac{d}{dx} (lnx) - (lnx) \dfrac{d}{dx} ({x}^{2} + 5x)}{ {( {x}^{2} + 5x )}^{2} }}

Differentiating lnx,

 {\longmapsto \rm \dfrac{d}{dx}(y) = \dfrac{ ( {x}^{2} + 5x)  \bigg( \dfrac{1}{x} \bigg)  - (lnx) \dfrac{d}{dx} ({x}^{2} + 5x)}{ {( {x}^{2} + 5x )}^{2} }}

Differentiating x² + 5x,

Using,

  • {\longmapsto \rm \dfrac{d}{dx} \times {x}^{n}  = n \times  {x}^{n - 1} }

  • {\longmapsto \rm \dfrac{d}{dx} ( {x}) = 1}

Thus, It will be,

{ \longmapsto \rm \dfrac{d}{dx}(y) = \dfrac{ ( {x}^{2} + 5x)  \bigg( \dfrac{1}{x} \bigg)  - (lnx) (2 \times {x}^{2 - 1} + 5(1))}{ {( {x}^{2} + 5x)}^{2} }}

 {\longmapsto \rm \dfrac{d}{dx}(y) = \dfrac{ ( {x}^{2} + 5x)  \bigg( \dfrac{1}{x} \bigg)  - (lnx) (2 {x} + 5)}{ {( {x}^{2} + 5x)}^{2} }}

\longmapsto \rm \dfrac{d}{dx}(y) = \dfrac{ ( {x} + 5)  - (lnx) (2 {x} + 5)}{ {( {x}^{2} + 5x)}^{2} }

∴ dy/dx of lnx/x² + 5x is (x + 5) - (lnx)(2x + 5)/(x² + 5x)².

More to know :

\begin{gathered}\boxed{\begin{array}{cc}\bf{\dag}\:\:\underline{\text{Differentiation  \:formulae:}}\\\\\bigstar\:\:\sf{ \dfrac{d}{dx}   \times { {x}^{n}}  = n \times  {x}^{n - 1} } \\\\\bigstar\:\:\sf{ \dfrac{d}{dx} ( {x}) = 1 }\\\\\bigstar\:\:\sf\dfrac{d}{dx} ( { Cons}) = 0\\\\\bigstar\:\:\sf\dfrac{d}{dx} ( {   log(x)  }) =  \dfrac{1}{x} \\\\\bigstar\:\:\sf\dfrac{d}{dx} ( {\sqrt{x}} )=  \dfrac{1}{2 \sqrt{x} }\\\\\bigstar\:\:\sf\dfrac{d}{dx} ( {\sin(x)} )=   \cos(x)\\\\\bigstar\:\:\sf\dfrac{d}{dx} ( {\cos(x)} )= - \sin(x) \\\\\bigstar\:\:\sf\dfrac{d}{dx} ( {\sin(x)} )=   \cos(x)\\\\\bigstar\:\:\sf\dfrac{d}{dx} ( {\tan(x)} )=     { \sec}^{2} (x) \\\\\bigstar\:\:\sf\dfrac{d}{dx} ( {\cot(x)} )=-  { \cosec}^{2} (x) \\\\\bigstar\:\:\sf\dfrac{d}{dx} ( {\sec(x)} )=\sec(x) \times  \tan(x)\\\\\bigstar\:\:\sf\dfrac{d}{dx} ( {\cosec(x)})= - \cosec(x) \times \cot(x)\end{array}}\end{gathered}

Similar questions
Science, 25 days ago