Math, asked by MdMuneeb, 1 month ago

y^2-23y+120=0 solve plz it's urgent ​

Answers

Answered by kk5964355
2

Step-by-step explanation:

it's a simple quadratic Equation.

U can check tha above solution.

Attachments:
Answered by ImperialGladiator
3

Answer:

\boldsymbol {y = 15 \: {\sf or }\: 8}

Explanation:

Om comapring with the general form of equation ax² + bx + c

We get,

  • a = 1
  • b = -23
  • c = 120

By quadratic formula,

 \boldsymbol{ \implies \: y =  \dfrac{  - b\pm \sqrt{ {(b)}^{2}  - 4ac} }{2a} }

Substituting the values,

 \boldsymbol{ \implies \: y =  \dfrac{  - ( - 23)\pm \sqrt{ {(23)}^{2}  - 4(1)(120)} }{2(1)} }

On further solving ,

 \boldsymbol{ \implies \: y =  \dfrac{  23\pm \sqrt{ 529  - 480} }{2} }

 \boldsymbol{ \implies \: y =  \dfrac{  23\pm \sqrt{49} }{2} }

 \boldsymbol{ \implies \: y =  \dfrac{  23\pm 7 }{2} }

 \boldsymbol{ \implies \: y =  \dfrac{  23 +  7 }{2} \:{ \sf \ \: or \: } \:  \dfrac{23 -7 }{2} }

 \boldsymbol{ \implies \: y =  \dfrac{30}{2} \:{ \sf \ \: or \: } \:  \dfrac{16}{2} }

 \boldsymbol{ \implies \: y =  15{ \sf \ \: or \: } \:  8 }

_____________________

Note:

Quadratic formula,

 \boldsymbol{ \implies \: x =  \dfrac{  - b\pm \sqrt{ {(b)}^{2}  - 4ac} }{2a} }

Genral form of a quadratic equation,

 \boldsymbol{ \implies ax^2 + bx + c = 0 }

Similar questions