Math, asked by ajaya6869gmailcom, 10 months ago

(y^2-5y)^2-20(y^2-5y)+84=0 find the solution of the quadratic equation by factorization method​

Answers

Answered by codiepienagoya
0

Given:

(y^2-5y)^2-20(y^2-5y)+84=0

To prove:

solve by factorization method​

Solution:

(y^2-5y)^2-20(y^2-5y)+84=0\\

let (y^2-5y) = t

\Rightarrow t^2-20t+84=0\\\\\Rightarrow t^2-(14+6)t+84=0\\\\\Rightarrow t^2-14t-6t+84=0\\\\\Rightarrow t(t-14)-6(t-14)=0\\\\\Rightarrow (t-14)(t-6)=0\\\\

put the t value:

\Rightarrow (t-14)(t-6)=0\\\\\Rightarrow ((y^2-5y)-14)((y^2-5y)-6)=0\\\\\Rightarrow y^2-5y-14=0 \ \ \ \ \ \ \ and \ \ \ \ \ \ \ \ \ \ y^2-5y-6=0\\\\\Rightarrow y^2-(7-2)y-14=0 \ \ \ \ \ \ \ and \ \ \ \ \ \ \ \ \ \ y^2-(6-1)y-6=0\\\\\Rightarrow y^2-7y+2y-14=0 \ \ \ \ \ \ \ and \ \ \ \ \ \ \ \ \ \ y^2-6y+y-6=0\\\\\Rightarrow y(y-7)+2(y-7)=0 \ \ \ \ \ \ \ and \ \ \ \ \ \ \ \ \ \ y(y-6)+1(y-6)=0\\\\\Rightarrow (y-7)(y+2)=0 \ \ \ \ \ \ \ and \ \ \ \ \ \ \ \ \ \ (y-6)(y+1)=0\\\\

\Rightarrow y= 7, -2 \ \ \ \ \ \ \ \ and  \ \ \ \  y = 6, -1

The final value is 7,-2 and 6,-1.

Similar questions