Math, asked by noelbinupsc, 8 months ago

y^2 cos(1/x)=a^2 find dy/dx​

Answers

Answered by Anishkabhadana
14

Answer:

Refer to the attachment.

Hope it helps you dear.

Mark as brainleist and follow me plz.

Attachments:
Answered by supreethacmsl
3

Differentiation is a process of finding the derivative or rate of change of one quantity with respect to another.

  • It is denoted by \frac{dy}{dx} or f'

The basic formula to find the differentiation of a polynomial function (say) y=x^n is,

                       \frac{dy}{dx}=\frac{d(x^n)}{dx}=nx^{n-1} This is called 'the power rule'.

                         

Given  ,  y^2 cos(\frac{1}{x})=a^2 , let us find \frac{dy}{dx}

Since we have to find differentiation of y with respect to x let us solve the given equation for 'y'.

                      y^2 cos(\frac{1}{x})=a^2\\\\y^2 =\frac{a^2}{cos(\frac{1}{x})}\\\\y=\sqrt{\frac{a^2}{cos(\frac{1}{x})}}

                   \frac{dy}{dx}=\frac{d}{dx}(\sqrt{\frac{a^2}{cos(\frac{1}{x})}}})  - - - - (1)

From trigonometric ratios we have,  

                 \frac{1}{cos(\frac{1}{x})} = sec(\frac{1}{x})

∴ equation (1) can be written as,

                    \frac{dy}{dx}=\frac{d}{dx}(\sqrt{a^2sec(\frac{1}{x})})\\\\\frac{dy}{dx}=a\,\frac{d}{dx}(\sqrt{sec(\frac{1}{x})}) - - - - (2)

  • Trigonometric functions are differentiable, and the differentiation of secx is

                  \frac{d(secx)}{dx}=secx\,\,tanx

  • and       \frac{d(\sqrt{x}\,)}{dx} = \frac{1}{2\sqrt{x}}
  • using power rule to differentiate \frac{1}{x}

         \frac{d(\frac{1}{x})}{dx}=\frac{d(x^{-1})}{dx} = -x^{-2} \\\\\frac{d(\frac{1}{x})}{dx}= -\frac{1}{2}

Let us solve (2) using the points mentioned above,

                  \frac{dy}{dx}=a\,\frac{d}{dx}(\sqrt{sec(\frac{1}{x})}) \\\\ \frac{dy}{dx}=a\,\frac{1}{2\sqrt{sec(\frac{1}{x})}}\frac{d}{dx}({sec(\frac{1}{x})})                 (Using chain rule)

                 \frac{dy}{dx}=-\frac{a}{2x^2}\,\frac{1}{\sqrt{sec(\frac{1}{x})}}\,sec(\frac{1}{x})}\,\,tan(\frac{1}{x})}\\\\\frac{dy}{dx}=-\frac{a\,\,\sqrt{sec(\frac{1}{x})}\,\,tan(\frac{1}{x})}{2x^2}

∴    \bf \frac{dy}{dx}=-\frac{a\,\,\sqrt{sec(\frac{1}{x})}\,\,tan(\frac{1}{x})}{2x^2}  is the required solution.

(#SPJ3)

Similar questions