Math, asked by sc140274darshikasinh, 1 month ago

y^2+y-72=0
y^2+y-72=0
quadratic equation​

Answers

Answered by adityapatel57208
0

Answer:

How to solve your problem

2

+

7

2

=

0

y^{2}+y-72=0

y2+y−72=0

Quadratic formula

Factor

1

Use the quadratic formula

=

±

2

4

2

y=\frac{-{\color{#e8710a}{b}} \pm \sqrt{{\color{#e8710a}{b}}^{2}-4{\color{#c92786}{a}}{\color{#129eaf}{c}}}}{2{\color{#c92786}{a}}}

y=2a−b±b2−4ac

Once in standard form, identify a, b and c from the original equation and plug them into the quadratic formula.

2

+

7

2

=

0

y^{2}+y-72=0

y2+y−72=0

=

1

a={\color{#c92786}{1}}

a=1

=

1

b={\color{#e8710a}{1}}

b=1

=

7

2

c={\color{#129eaf}{-72}}

c=−72

=

1

±

1

2

4

1

(

7

2

)

2

1

y=\frac{-{\color{#e8710a}{1}} \pm \sqrt{{\color{#e8710a}{1}}^{2}-4 \cdot {\color{#c92786}{1}}({\color{#129eaf}{-72}})}}{2 \cdot {\color{#c92786}{1}}}

y=2⋅1−1±12−4⋅1(−72)

2

Simplify

Evaluate the exponent

Multiply the numbers

Add the numbers

Evaluate the square root

Multiply the numbers

=

1

±

1

7

2

y=\frac{-1 \pm 17}{2}

y=2−1±17

3

Separate the equations

To solve for the unknown variable, separate into two equations: one with a plus and the other with a minus.

=

1

+

1

7

2

y=\frac{-1+17}{2}

y=2−1+17

=

1

1

7

2

y=\frac{-1-17}{2}

y=2−1−17

4

Solve

Rearrange and isolate the variable to find each solution

=

8

y=8

y=8

=

9

y=-9

y=−9

Solution

=

8

=

9

Similar questions