Math, asked by harshitraj1407, 8 months ago

y = 2x.sinx + 3 cos x - 4x.ln x​

Answers

Answered by BrainlyTornado
3

CORRECT QUESTION:

Differentiate y = 2x.sinx + 3 cos x - 4x.ln x

ANSWER:

y' = 2 x\cos x  -  \sin x - 4 - 4\:ln(x)

GIVEN:

y = 2x.sinx + 3 cos x - 4x.ln x

TO FIND:

dy/dx or y'

FORMUALE:

 \dfrac{d}{dx} (u.v) = uv' + vu'\\ \\ \\\dfrac{d}{dx}  \sin x =  \cos x\\ \\ \\ \dfrac{dx}{dx} = 1\\ \\ \\ \dfrac{d}{dx}  \cos x =  -  \sin x\\ \\ \\ \dfrac{d}{dx} ln(x)  =  \dfrac{1}{x}

EXPLANATION:

Let y = g(x) + h(x) + i(x)

Also y' = g'(x) + h'(x) + i'(x)

Let g(x) = 2x.sinx

Differentiate with respect to x

g'(x) = 2x \left( \dfrac{d}{dx}  \sin x \right) + 2 \sin x \left( \dfrac{dx}{dx}\right) \\ \\ \\ g'(x) = 2x \cos x\bigg(\frac{dx}{dx}\bigg) + 2 \sin x \\ \\  \\g'(x) = 2 \sin x  + 2x \cos x

Let h(x) = 3 cos x

Differentiate with respect to x

h'(x) =3 \left( \dfrac{d}{dx}  \cos x \right) \\  \\ \\ h'(x)=  -  3\sin x\bigg(\dfrac{dx}{dx}\bigg)\\ \\ \\h'(x)=  -  3\sin x

Let i(x) = - 4x.ln(x)

Differentiate with respect to x

 i'(x)=   - 4x \bigg(\dfrac{d}{dx} ln(x)  \bigg)   - 4 ln(x)  \bigg( \frac{dx}{dx}  \bigg)\\ \\ \\ i'(x)= -4\bigg(\dfrac{x}{x}\bigg)\bigg(\dfrac{dx}{dx}\bigg)\\ \\ \\i'(x) =  - 4  - 4\:ln(x)

g'(x) + h'(x) + i'(x) = y' \\ \\ \\ y' = 2\sin x  + 2 x\cos x -  3\sin x - 4   - 4\:ln(x)  \\  \\  \\ y' = 2x \cos x  -  \sin x - 4 - 4\:ln(x)

Similar questions