y = 2x³ - 15x² + 36x + 1 , Find maxima or minima ?
Pls provide full steps !!
Answers
Answered by
18
Answer:
dy / dx = 0
d / dx ( 2x³ - 15x² + 36x + 1 ) = 0
《 6x² - 30 x + 36 = 0 》
x² - 5x + 6 = 0
x² - 3x - 2x + 6 = 0
x(x - 3) - 2(x - 3) = 0
(x - 2) (x - 3) = 0
x = 2 , 3 .
NOW,
d²y / dx² = d / dx ( 6x² - 30 x + 36 )
d²y / dx² = 12 x - 30 .
putting the values of x :-
AT X = 2 ,
d²y / dx² = ( 12 × 2 ) - 30 = -6 < 0 .
at x = 2 , y is maximum.
AT X = 3 ,
d²y / dx² = ( 12 × 3 ) - 30 = 6 > 0 .
at x = 3 , y is minimum.
y(max) = 2(2)³ - 15(2)² + (36 × 2) + 1
= 16 - 60 + 72 + 1
y(max) = 29 .
y(min) = 2(3)³ - 15(3)² + (36 × 3) + 1
= 54 - 135 + 108 + 1
y(min) = 28 .
therefore, maxima = 29.
and minima = 28 .
Answered by
0
Answer:
here Maxima 29 and minima 29
Similar questions