Math, asked by zame1821, 1 year ago

Y''-2y'+y=(x^3)*(cos2x) using method of undetermined coefficients

Answers

Answered by saurabhsemalti
1
here p=1-
q=2
r=1
1+p+q=0
y=e^x is part of cf
let \: y = v {e}^{x} \\  \frac{dy}{dx}  = v  {e}^{x} +  {e}^{x}  \frac{dv}{dx} \\  \frac{ {d}^{2} y}{d {x}^{2} }  =   2{e}^{x} \frac{dv}{dx}  + v  {e}^{x} +  {e}^{x}  \frac{ {d}^{2}v }{d {x}^{2} }  \\ put \: in \: original \: eqn \\ (2 {e}^{x}  \frac{dv}{dx}  +v {e}^{x}    + {e}^{x}  \frac{ {d}^{2}v }{d {x}^{2} } ) - 2(v  {e}^{x} +  {e}^{x}  \frac{dv}{dx} ) + v {e}^{x}  =  {x}^{3}  \cos(2x)  \\   \frac{ {d}^{2} v}{d {x}^{2} } ( {e}^{x} ) + \frac{dv}{dx} (2  {e}^{x} - 2 {e}^{x} )  - v(2 {e}^{x}  - 2 {e}^{x} ) =  {x}^{3}  \cos(2x)  \\  \\  \frac{ {d}^{2}v }{d {x}^{2} } ( {e}^{x} ) =  {x}^{3}  \cos(2x)  \\  \frac{ {d}^{2}v }{d {x}^{2} }  =  {e}^{ - x}  {x}^{3}  \cos(2x)  \\  \\ now \: u \: can \: solve \: it
MARK AS BRAINLIEST IF HELPED
Similar questions