y^3=x^2+y^2 (2nd order derivative )
Answers
Answered by
1
Given that,
y³ = x² + y²
Now, differentiating both sides with respect to x, we get
d/dx (y³) = d/dx (x² + y²)
⇥ 3y² dy/dx = 2x + 2y dy/dx
⇥ (3y² - 2y) dy/dx = 2x
Again, differentiating both sides with respect to x, we get
d/dx {(3y² - 2y) dy/dx} = d/dx (2x)
⇥ (dy/dx) {d/dx (3y² - 2y)} + (3y² - 2y) d/dx (dy/dx) = 2
⇥ (dy/dx) (6y dy/dx - 2 dy/dx) + (3y² - 2y) d²y/dx² = 2
⇥ (6y - 2) (dy/dx)² + (3y² - 2y) d²y/dx² = 2
⇥ (6y - 2) {2x/(3y² - 2y)}² + (3y² - 2y) d²y/dx² = 2
⇥ d²y/dx² = - [(6y - 2) {2x/(3y² - 2y)}² - 2]/(3y² - 2y)
#
Similar questions