Math, asked by SARATHNS, 10 months ago

y^3*x^5=(x+y)^8 then dy/dx is

Answers

Answered by Anonymous
7

Question:

If (y^3)(x^5) = (x+y)^8 , then find dy/dx .

Answer:

dy/dx = [5•(y^3)•(x^4) - {8(x+y)^7}] /

[{8(x+y)^7} - 3•(x^5)•(y^2)]

Note:

• d(u±v)/dx = du/dx ± dv/dx

• d(u•v)/dx = u•(dv/dx) + v•(du/dx)

• d(x^n)/dx = n•x^(n-1)

Solution:

Here,

The given equation is ;

(y^3)(x^5) = (x+y)^8

Now,

Differentiating both sides of the given equation with respect to x , we get;

=> d{(y^3)(x^5)}/dx = d{(x+y)^8}/dx

=> (y^3)•d(x^5)/dx + (x^5)•d(y^3)/dx

= {8(x+y)^7}•d(x+y)/dx

=> (y^3)•(5x^4) + (x^5)•(3y^2)•(dy/dx)

= {8(x+y)^7}•(dx/dx + dy/dx)

=> 5•(y^3)•(x^4) + 3•(x^5)•(y^2)•(dy/dx)

= {8(x+y)^7}•(1 + dy/dx)

=> 5•(y^3)•(x^4) + 3•(x^5)•(y^2)•(dy/dx)

= {8(x+y)^7} + {8(x+y)^7}•(dy/dx)

=> 5•(y^3)•(x^4) - {8(x+y)^7} =

{8(x+y)^7}•(dy/dx) - 3•(x^5)•(y^2)•(dy/dx)

=> 5•(y^3)•(x^4) - {8(x+y)^7} =

(dy/dx)•[{8(x+y)^7} - 3•(x^5)•(y^2)]

=> dy/dx = [5•(y^3)•(x^4) - {8(x+y)^7}] /

[{8(x+y)^7} - 3•(x^5)•(y^2)]

Hence,

The required value of dy/dx is;

[5•(y^3)•(x^4) - {8(x+y)^7}] / [{8(x+y)^7} - 3•(x^5)•(y^2)]

Answered by Anonymous
4

Question :-

 \small \:  \: if \:  \:  {y}^{3} {x}^{5}  =  {(x + y)}^{8}  \:  \: then \: find \:  \:  \frac{dy}{dx}

Answer:-

\boxed{  \red{\small \frac{dy}{dx}  =} \green{  \frac{8 { \:(x + y)}^{7}  - 5 {x}^{4} {y}^{3}  }{ 3 {y}^{2}  {x}^{5}  - 8 {(x + y)}^{7}  } } }\:

Explanation:-

Applied Conditions:-

We know that,

 \star  \:  \: \:  \frac{d}{dx}  {x}^{n}  = n \: \:   {x}^{n - 1}  \\   \\ \star \:  \: for \: two \: variables \\  \frac{d}{dx}  \: x \: y \:  = x \:  \frac{dy}{dx}  + y \:  \frac{d}{dx} x \\  \\

To find :-

 \red{find \:  \:  \frac{dy}{dx} \: } \:

Solution :-

According to the question,

 \small \:  \:   {y}^{3}  \:  {x}^{5}  =  {(x + y)}^{8}  \\

Now , differentiating on both sides with respect to "x" ,then we get,

 \small \:  \frac{d}{dx}  {y}^{3} {x}^{5}  =  \frac{d}{dx}  {(x +y) }^{8}  \\  \\

Applied the given conditions,

  \small \: {y}^{3}  \frac{d}{dx}  {x}^{5}  +  {x}^{5}  \frac{d}{dx}  {y}^{3}  \:  =  \frac{d}{dx}  {(x + y)}^{8}  \\  \\  \small \:  {y}^{3}  \times 5 {x}^{4}  +  {x}^{5}  \times  3 {y}^{2}   \frac{dy}{dx}  = 8 {(x + y)}^{7}  \big(1 +  \frac{dy}{dx}  \big) \\  \\  \small \: 5 {x}^{4}  {y}^{3}  + 3 {y}^{2}  {x}^{5}  \frac{dy}{dx}  = 8 {(x + y)}^{7}  + 8 {(x + y)}^{7}  \frac{dy}{dx}  \\  \\  \small \: 3 {y}^{2}  {x}^{5}  \frac{dy}{dx}  - 8 {(x + y)}^{7}  \frac{dy}{dx}  = 8 {(x + y)}^{7}  - 5 {x}^{4}  {y}^{3}  \\  \\  \small \:  \frac{dy}{dx}  \bigg(3 {y}^{2}  {x}^{5}  - 8 {(x + y)}^{7}  \bigg) = 8 {(x + y)}^{7}  - 5 {x}^{4}  {y}^{3} \:  \\

Now ,

 \red{ \boxed{ \small \frac{dy}{dx}  =  \frac{8 { \:(x + y)}^{7}  - 5 {x}^{4} {y}^{3}  }{ 3 {y}^{2}  {x}^{5}  - 8 {(x + y)}^{7}  } }}\\

This is the required solution.

Similar questions