Math, asked by gugu9220, 1 month ago

y = | 3x - 4 |
Please draw the graph of this function.

Answers

Answered by komalkashyap2412
3

Answer:

y - 12 answer

Step-by-step explanation:

please ❤️❤️❤️❤️❤️ follow

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:y =  |3x - 4|

Let first define the function,

We know that,

\begin{gathered}\begin{gathered}\rm :\longmapsto\:\bf\:  |x|  = \begin{cases} &\sf{ \:  \: x \:  \:  \: when \: x \geqslant 0} \\ &\sf{ - x \:  \: when \: x < 0} \end{cases}\end{gathered}\end{gathered}

So,

\begin{gathered}\begin{gathered}\rm :\longmapsto\:\bf\:  |3x - 4|  = \begin{cases} &\sf{ \:  \: 3x - 4 \:  \:  \: when \: 3x - 4\geqslant 0} \\ &\sf{ - 3x + 4 \:  \: when \: 3x - 4 < 0} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\rm :\longmapsto\:\bf\:  |3x - 4|  = \begin{cases} &\sf{ \:  \: 3x - 4 \:  \:  \: when \: x\geqslant  \dfrac{4}{3} } \\ \\  &\sf{ - 3x + 4 \:  \: when \: x<  \dfrac{4}{3} } \end{cases}\end{gathered}\end{gathered}

So,

\begin{gathered}\begin{gathered}\bf\implies \:\bf\:  y  = \begin{cases} &\sf{ \:  \: 3x - 4 \:  \:  \: when \: x\geqslant  \dfrac{4}{3} } \\ \\  &\sf{ - 3x + 4 \:  \: when \: x<  \dfrac{4}{3} } \end{cases}\end{gathered}\end{gathered}

Case :- 1

\rm :\longmapsto\:y = 3x - 4

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 2 & \sf 2 \\ \\ \sf 3 & \sf 5\\ \\ \sf 4 & \sf 8 \end{array}} \\ \end{gathered}

➢ Now draw a graph using the points.

➢ See the attachment graph.

Case :- 2

\rm :\longmapsto\:y =  - 3x  +  4

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 1 & \sf 1 \\ \\ \sf 0 & \sf 4\\ \\ \sf  - 1 & \sf 7 \end{array}} \\ \end{gathered}

➢ Now draw a graph using the points.

See the attachment graph.

Attachments:
Similar questions