Math, asked by NoahVazquez, 9 months ago

(y^{4})-16y=(e^2x)-(15cos(x))

ojo.... no es potencia, es la 4 derivada, es una EDO lineal homogénea con coeficientes constantes....

Answers

Answered by Swarup1998
4

Differential Equations

Solution:

The given differential equation is

\quad (D^{4}-16)\:y=e^{2x}-15\:cosx

To find C.F.

Auxiliary equation is

\quad m^{4}-16=0

\Rightarrow m=2,\:-2,\:\pm 2i

\therefore C.F. =C_{1}e^{2x}+C_{2}e^{-2x}+C_{3}\:cos2x+C_{4}\:sin2x

To find P.I.

We assume a particular solution y_{p} of the form

\quad y_{p}=Axe^{2x}+B\:sinx+C\:cosx

\Rightarrow Dy_{p}=2Axe^{2x}+Ae^{2x}+B\:cosx-C\:sinx

\Rightarrow D^{2}y_{p}=4Axe^{2x}+4Ae^{2x}-B\:sinx-C\:cosx

\Rightarrow D^{3}y_{p}=8Axe^{2x}+12Ae^{2x}-B\:sinx-C\:cosx

\Rightarrow D^{4}y_{p}=16Axe^{2x}+32Ae^{2x}+B\:sinx+C\:cosx

We have

\quad (D^{4}-16)\:y_{p}=e^{2x}-15\:cosx

\Rightarrow 16Axe^{2x}+32Ae^{2x}+B\:sinx+C\:cosx-16Axe^{2x}-16B\:sinx-16C\:cosx=e^{2x}-15\:cosx

\Rightarrow 32Ae^{2x}-15B\:sinx-15C\:cosx=e^{2x}-15\:cosx

Comparing among coefficients, we get

\quad A=\frac{1}{32},\:B=0,\:C=1

So we have

\quad y_{p}=\frac{1}{32}xe^{2x}+cosx

Finding complete solution.

Therefore the general solution is

y=C_{1}e^{2x}+C_{2}e^{-2x}+C_{3}\:cos2x+C_{4}\:sin2x+\frac{1}{32}xe^{2x}+cosx

Read more on Brainly.in

Find the general solution of the non-homogeneous equation

\quad (D^{2}-6D-7)y=8e^{-x}-7x-6

https://brainly.in/question/16750311

Similar questions