y^4-4y^3+8y^2-my+n is divided by y+1 and y-1 . The remainders are 10 and 16 respectively . Find the values of m and n
Answers
Answered by
0
Answer:
if y-1 =0
y=1
substitute value of y from equations (i)
1^4-4(1)^3+8(1)^2-m(1)+n =16
1-4+8-m+n=16
11-m+n=16
-m+n=16-11
-m+n=5................................................................(ii)
now if. y+1=0
y= -1......................................................................(iii)
substitute the value of y from equation (iii)
(-1)^4-4(-1)^3+8(-1)^2-m(-1)+n=10
1-(-4)+8-(-m)+n=10
1+4+8+m+n=10
13+m+n=10
m+n=10-13
m+n= -3 ................................................(iv)
from equation (ii) and (iv) we get :
-m+n=5
m+n= -3
2n=2
n=1
now substitute value of 'n' in equation (iv)
m+(1)= -3
m= -3-1
m=-4
................................................................................................
HOPE IT HELPS U,
Similar questions