Math, asked by lahanetulshiram, 11 months ago

y = 4^log2 (sin x) + 9^log3 (cos x) , then (log 2)(log 3) dy dx =​

Answers

Answered by Swarup1998
6

Derivatives

Formula:

\quad\mathsf{\frac{d}{dx}(a^{mx})=ma^{mx}.lna,\:(a>0)\:m\in\mathbb{R}}

\quad\mathsf{\frac{d}{dx}\{ln(sinx)\}=cotx}

\quad\mathsf{\frac{d}{dx}\{ln(cosx)\}=-tanx}

Solution.

Let, \mathsf{p(x)=4^{log_{2}(sinx)}}

and \mathsf{q(x)=9^{log_{3}(cosx)}}

We do term by term derivative.

For \mathsf{p(x)}:

Differentiating with respect to \mathsf{x}, we get

\quad \mathsf{\frac{d}{dx}\{p(x)\}=\frac{d}{dx}\{4^{log_{2}(sinx)}\}}

\Rightarrow \mathsf{p'(x)=4^{log_{2}(sinx)}.ln4.\frac{d}{dx}\{log_{2}(sinx)\}}

\Rightarrow \mathsf{p'(x)=4^{log_{2}(sinx)}.ln4.\frac{d}{dx}\left(\frac{ln(sinx)}{ln2}\right)}

\Rightarrow \mathsf{p'(x)=4^{log_{2}(sinx)}.\frac{ln4}{ln2}.cotx}

For \mathsf{q(x)}:

Differentiating with respect to \mathsf{x}, we get

\quad \mathsf{\frac{d}{dx}\{q(x)\}=\frac{d}{dx}\{9^{log_{3}(cosx)}\}}

\Rightarrow \mathsf{q'(x)=9^{log_{3}(cosx)}.ln9.\frac{d}{dx}\{log_{3}(cosx)\}}

\Rightarrow \mathsf{q'(x)=9^{log_{3}(cosx)}.ln9.\frac{d}{dx}\left(\frac{ln(cosx)}{ln3}\right)}

\Rightarrow \mathsf{q'(x)=9^{log_{3}(cosx)}.\frac{ln9}{ln3}.(-tanx)}

Now, \mathsf{\frac{dy}{dx}=p'(x)+q'(x)}

\Rightarrow \mathsf{\frac{dy}{dx}=4^{log_{2}(sinx)}.\frac{ln4}{ln2}.cotx-9^{log_{3}(cosx)}.\frac{ln9}{ln3}.tanx}

\Rightarrow \mathsf{ln2.ln3.\frac{dy}{dx}=4^{log_{2}(sinx)}.ln3.ln4.cotx-9^{log_{3}(cosx)}.ln2.ln9.tanx}

\Rightarrow \boxed{\color{blue}\mathsf{ln2.ln3.\frac{dy}{dx}=2.ln3 .ln2.[4^{log_{2}(sinx)}.cotx-9^{log_{3}(cosx)}.tanx]}}

Similar questions