Math, asked by alexsiju7907, 1 month ago

y = (5 ^ x)/(x ^ 5), Find * (dy)/(dx)​

Answers

Answered by Anonymous
46

Given: y = 5^x/x⁵

Need to find: We are asked to find d/dx with respect to y.

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀

¤ To calculate dy/dx, Let's use Quotient rule, It is given by –

\begin{gathered}\quad\star\;\underline{\boxed{\pmb{\frak{ \sf{}\dfrac{d}{dx}\left(\dfrac{u}{v} \right)= \dfrac{v  \times  \frac{d}{dx}(u ) - u \times  \frac{d}{dx} (v)}{{v}^{2}} }}}}\\\\\end{gathered}

⠀⠀⠀\begin{gathered}\underline{\bf{\dag} \:\mathfrak{Substituting\;values\;in\; formula\: :}}\\\\\end{gathered}

⠀⠀⠀⠀

\begin{gathered}:\implies\sf    \frac{{x}^{5}   \dfrac{d}{dx} ( {5}^{x})  -  {5}^{x}   \frac{d}{dx} ( {x}^{5})}{  {({x}^{5} )}^{2} } \\\\\\:\implies\sf\dfrac{{x}^{5} ( {5}^{x} ln(5))-  {5}^{x}  ( {5x}^{5 - 1} )}{  {({x}^{5} )}^{2} }\\\\\\:\implies\sf \dfrac{ln(x) \times  {5}^{x} {x}^{5}   -  {5}^{x + 1}  \times  {x}^{4} }{  {({x}^{5} )}^{2} }\\\\\\:\implies\sf\dfrac{ {5}^{ x }  {x}^{4}  (ln(5)x - 5)}{  {{x}^{10}}} \\  \\  \\   : \implies \sf  \dfrac{ {5}^{ x }  \cancel{ {x}^{4}  }(ln(5)x - 5)}{   \cancel{{{x}^{10}}}}\\ \\ \\:\implies\underline{\boxed{\pmb{\frak{\dfrac{ {5}^{ x }   (ln(5)x - 5)}{  {{x}^{6}}}}}}}\;\bigstar\\\\\end{gathered}

\:\;\therefore{\underline{\sf{d/dx  \:  \:  \: of \: \:  \:   \dfrac{{5}^{x}}{{x}^{5}}\: \:  \:  is  \:  \:  \: \dfrac{ {5}^{ x }   (ln(5)x - 5)}{  {{x}^{6}}}}}}

Answered by xXxShreyasxXx
0

Answer:

46 \times 12 \\ ( -  \div 12 \\  \cos(a)

this is answer

Similar questions