Math, asked by alexsiju7907, 1 month ago

y = (5x)/(x ^ 5), Find * (dy)/(dx)​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:y = \dfrac{5x}{ {x}^{5} }

can be rewritten as

\rm :\longmapsto\:y = 5 {x}^{1 - 5}

\rm :\longmapsto\:y = 5 {x}^{ - 4}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y =\dfrac{d}{dx} \:  {5x}^{ - 4}

We know,

\boxed{ \bf{ \: \dfrac{d}{dx}k \: f(x) = k \: \dfrac{d}{dx}f(x)}}

Using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} =5 \: \dfrac{d}{dx} \:   {x}^{ - 4}

We know,

\boxed{ \bf{ \: \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1}}}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} =5 \:( - 4) {x}^{ - 4 - 1}

\rm :\longmapsto\:\dfrac{dy}{dx}  =  - 20 {x}^{ - 5}

\bf :\longmapsto\:\dfrac{dy}{dx}  =  -  \: \dfrac{20}{ {x}^{5} }

Additional Information :-

\boxed{ \bf{ \: \dfrac{d}{dx}k = 0}}

\boxed{ \bf{ \: \dfrac{d}{dx}x = 1}}

\boxed{ \bf{ \: \dfrac{d}{dx}logx =  \frac{1}{x}}}

\boxed{ \bf{ \: \dfrac{d}{dx} {e}^{x} =   {e}^{x} }}

\boxed{ \bf{ \: \dfrac{d}{dx} {a}^{x} =   {a}^{x}  \: loga}}

\boxed{ \bf{ \: \dfrac{d}{dx} \sqrt{x} =  \frac{1}{2 \sqrt{x} }}}

Similar questions