Computer Science, asked by maysamahmed07, 18 days ago

(y-9)(y-7)(y+3)(y+1)-384=o​

Answers

Answered by anindyaadhikari13
2

Solution:

Given Equation:

 \rm \longrightarrow (y - 9)(y - 7)(y + 3)(y + 1) - 384 = 0

Can be written as:

 \rm \longrightarrow (y - 9)(y + 3)(y - 7)(y + 1) - 384 = 0

 \rm \longrightarrow ( {y}^{2} - 6y - 27)( {y}^{2} - 6y - 7) - 384 = 0

Now, let us assume that:

 \rm \longrightarrow x =  {y}^{2} - 6y

Therefore:

 \rm \longrightarrow (x- 27)(x- 7) - 384 = 0

 \rm \longrightarrow  {x}^{2} - 34x + 189 - 384 = 0

 \rm \longrightarrow  {x}^{2} - 34x - 195= 0

By splitting the middle term, we get:

 \rm \longrightarrow  {x}^{2} - 39x  + 5x- 195= 0

 \rm \longrightarrow x(x - 39)  + 5(x- 39)= 0

 \rm \longrightarrow (x+ 5)(x- 39)= 0

Therefore:

 \rm \longrightarrow x = -5,39

Now, substitute back x = y² - 6y. We get:

 \longrightarrow \begin{cases} \rm {y}^{2}  - 6y =  - 5 \\ \rm {y}^{2}  - 6y = 39 \end{cases}

Solving the first equation:

\rm  \longrightarrow{y}^{2}  - 6y =  - 5

\rm  \longrightarrow{y}^{2}  - 6y + 5 = 0

\rm  \longrightarrow{y}^{2}  - y  - 5y+ 5 = 0

\rm  \longrightarrow y(y -1) - 5(y - 1)= 0

\rm  \longrightarrow (y - 5)(y - 1)= 0

 \rm \longrightarrow y = 1,5 - (i)

Now, consider the second equation:

\rm  \longrightarrow{y}^{2}  - 6y =  39

\rm  \longrightarrow{y}^{2}  - 6y - 39 = 0

\rm  \longrightarrow y =  \dfrac{6 \pm \sqrt{36 + 4 \times 39} }{2}

\rm  \longrightarrow y =  \dfrac{6 \pm \sqrt{36 + 156} }{2}

\rm  \longrightarrow y =  \dfrac{6 \pm \sqrt{192} }{2}

\rm  \longrightarrow y =  \dfrac{6 \pm \sqrt{64 \times 3} }{2}

\rm  \longrightarrow y =  \dfrac{6 \pm 8\sqrt{3} }{2}

\rm  \longrightarrow y =3 \pm4 \sqrt{3}

 \rm \longrightarrow y = 4 +  \sqrt{3} ,4 -  \sqrt{3}  - (ii)

So, the values of y are:

 \rm \longrightarrow y =1,5,4 +  \sqrt{3} ,4 -  \sqrt{3}

★ Which is our required answer.

Answer:

  • The values of y are 1, 5, 4 + √3 and 4 - √3
Similar questions