Math, asked by tejasssuthrave999, 8 months ago

y=a^1/2 loga cos x.Find dy/dx​

Answers

Answered by aadi7571
9

Answer:

Step-by-step explanation:

I Hope You Understand :-)

Attachments:
Answered by payalchatterje
0

Answer:

Required value of  \frac{dy}{dx}

is  -  \sqrt{a} sinx

Step-by-step explanation:

Get,

y =  \sqrt{a}  log(a \cos(x) )

This is a problem of Calculas.

We are differentiating y with respect to x,

 \frac{dy}{dx}  =  \frac{d}{dx} ( \sqrt{a}  log(a \cos(x) )  =   \sqrt{a} \frac{d}{dx} ( log(a \cos(x)   ) =  \sqrt{a}  \times  \frac{1}{a \cos(x) }  \times  \frac{d}{dx} (a \cos(x) ) =  \frac{1}{a \cos( x)  }  \times  \sqrt{a} ( - asinx) =  -  \sqrt{a}  \frac{ \sin(x) }{ \cos(x) }  =  -  \sqrt{a} tanx

Required value of  \frac{dy}{dx} is ( -  \sqrt{a} tanx)

Here applied formulas are

 1.\frac{d}{dx} ( log(x) ) =  \frac{1}{x} \\ 2. \frac{d}{dx}  (cosx) =  - sinx

Some extra formulas of calculas,

1. \frac{d}{dx} ( \sin(x) ) =  \cos(x  )  \\ 2. \frac{d}{dx} ( \cos(x) ) =  -  \sin(x)  \\ 3. \frac{d}{dx} ( \tan(x) ) =  {sec}^{2} x \\ 4. \frac{d}{dx} ( \cot(x) ) =  -  {cosec}^{2} x \\ 5. \frac{d}{dx} ( \sec(x) ) =  \sec(x)  \tan(x)  \\ 6. \frac{d}{dx} (cosec(x)) =  - cosecxcotx

Similar questions