Math, asked by ishuthappa468, 6 months ago

Y=a sinx + b cosx prove that y^2 + (dy/dy)^2 = a^2 + b^2

Answers

Answered by aryan073
5

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Question :

Y=asinx+bcosx .prove that y²+(dy/dx)²=a²+b²

Given :

Y=asinx+bcosx

To prove:

\rm{y^2+\bigg(\dfrac{dy}{dx}\bigg)^{2} = a^2+b^2}

Solution:

 \large  \green{\bold{ \underline{ \underline{step \: by \: step \: explaination}}}}

 \\  \implies \large \sf \: y \:  = asinx \:  + b \: cos \: x

  \\ \color{pink} \:  \:  \:  \:  \bigstar\large \red{ \bf{ \underline{squaring \: both \: sides}}}

 \\  \implies \large \sf \:  {y}^{2}  =  {(asinx + bcosx)}^{2}

  \\ \implies \large \sf \:  {y}^{2}  =   {a}^{2} {sin}^{2} x +  {b}^{2}  {cos}^{2} x + 2asinxbcosx

  \\ \implies \large \sf  \:  {y}^{2}  =  {a}^{2}  {sin}^{2} x +  {b}^{2}  {cos}^{2} x + 2asinx bcosx \:  \: ... \:. .......equation.(1)

______________________________________

 \\  \implies \large \sf \: y = asinx \:  + bcosx

  \\   \color{blue} \bigstar \pink{\bf{ \underline{ differentiating \: both \: side \: with \: respect \: to \: x}}}

 \\  \implies \large \sf \:  \frac{dy}{dx}  = a \frac{dy}{dx} sinx + b \frac{dy}{dx}

 \\  \implies \large \sf \:  \frac{dy}{dx}  = acosx  - bsinx \:  \:

  \color{green} \large \bigstar \blue{ \bf{ \underline{squaring \: both \: sides}}}

  \\ \implies \large \sf \: \bigg(  { \frac{dy}{dx} } \bigg)^{2}  =  {(acosx - bsinx)}^{2}

  \\ \implies \large \sf \:   \bigg({ \frac{dy}{dx} }^{2}  \bigg) =  {a}^{2}  {cos}^{2} x +  {b}^{2}  {sin}^{2} x - 2acosxbsinx \:  \: .......equation(2)

 \color{cyan} \large \bigstar \red{ \bf{ \underline{adding \: both \: equations \: (1) \: and \: (2)}}}

 \\  \implies \large \sf \: y +   \bigg({ \frac{dy}{dx} } \bigg)^{2}  =  {a}^{2}  {sin}^{2} x +  {b}^{2}  {cos}^{2} x + 2asinxcosx +  {a}^{2}  {cos}^{2} x +  {b}^{2}  {sin}^{2} x + 2absinxcosx - 2abcosxsin

 \\  \implies \large \sf \: y +   \bigg({ \frac{dy}{dx} } \bigg)^{2}  =  {a}^{2} ( {sin}^{2} x +  {cos}^{2}x) +  {b}^{2}  ( {sin}^{2} x +  {cos}^{2} x) +  \cancel{2absinxcosx} -  \cancel{2basinxcosx}

 \\  \implies \large \sf \: y +   \bigg({ \frac{dy}{dx} } \bigg)^{2} =  {a}^{2}   +  {b}^{2}

   \: \therefore\boxed{ \bf{ \underline{ y +  \bigg( { \frac{dy}{dx} } \bigg)^{2}  =  {a}^{2}  +  {b}^{2} }}}

hence proved

Similar questions