Math, asked by gangadharvanaparthi, 7 months ago

y = ax^2+ b x then form a differential equation where a,b are parameters​

Answers

Answered by senboni123456
4

Step-by-step explanation:

We have,

y = a {x}^{2}  + bx \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ...(1)

Differentiating both sides w.r.t x,

 \implies \: {y}_{1}  = 2a x + b\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  ...(2) \\

Again, differentiating both sides w.r.t x,

 \implies \: {y}_{2}  = 2a  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  ...(3) \\

Put (3) in (2),

 \implies \: {y}_{1}  =x{y}_{2} + b\\

 \implies b = {y}_{1}  -  x{y}_{2}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  ...(4)

Put (3),(4) in (1),

y =  \dfrac{{y}_{2} }{2}  \cdot{x}^{2}  + x  \left(  {y}_{1} - x {y}_{2}\right)

 \implies \: 2y =   {x}^{2}  \cdot{y}_{2}  +2 x  \left(  {y}_{1} - x {y}_{2}\right) \\

 \implies \: 2y =   {x}^{2}  \cdot{y}_{2}  +2 x  \cdot {y}_{1} -2{x}^{2} \cdot  {y}_{2}\\

 \implies \: 2y =  2 x  \cdot {y}_{1} -{x}^{2} \cdot  {y}_{2}\\

 \implies \: {x}^{2} \cdot  {y}_{2} -  2 x  \cdot {y}_{1}  + 2y = 0\\

Similar questions