Math, asked by rahulvinay, 20 days ago

y=ax²+b formation of differential equations by eliminating orbitary constants​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given curve is

\rm \: y =  {ax}^{2} + b  -  -  - (1)\\

Since, the given curve has two arbitrary constants a and b, so we have to differentiate twice the given equation and then we have to eliminate a and b to get the required differential equation.

So, on differentiating both sides w. r. t. x, we get

\rm \: \dfrac{d}{dx}y = \dfrac{d}{dx}( {ax}^{2} + b) \\

\rm \: \dfrac{dy}{dx} = a\dfrac{d}{dx} {x}^{2} + \dfrac{d}{dx}b \\

\rm \: \dfrac{dy}{dx} = 2ax + 0  \\

\rm \: \dfrac{dy}{dx} = 2ax -  -  -  - (2) \\

On differentiating both sides w. r. t. x, we get

\rm \:\dfrac{d}{dx}\bigg( \dfrac{dy}{dx}\bigg) = \dfrac{d}{dx}2ax  \\

\rm \: \dfrac{ {d}^{2} y}{ {dx}^{2} } = 2a\dfrac{d}{dx}x \\

\rm \: \dfrac{ {d}^{2} y}{ {dx}^{2} } = 2a \times 1 \\

\rm \: \dfrac{ {d}^{2} y}{ {dx}^{2} } = 2a  -  -  - (3) \\

On substituting the value of 2a in equation (2), we get

\rm \:\dfrac{dy}{dx}  = x\dfrac{ {d}^{2} y}{ {dx}^{2} }  \\

\rm\implies \:\rm \: x\dfrac{ {d}^{2} y}{ {dx}^{2} }  - \dfrac{dy}{dx}  = 0\\

is the required differential equation.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Formulae used :-

\boxed{\sf{  \:\rm \: \dfrac{d}{dx} {x}^{n} \:  =  \:  {nx}^{n - 1}  \:  \: }} \\

\boxed{\sf{  \:\rm \: \dfrac{d}{dx} k = 0 \:  \: }} \\

\boxed{\sf{  \:\rm \: \dfrac{d}{dx}x = 1 \:  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions