Math, asked by kakadishan, 2 months ago

y = cos^-1 (3cosx-2sinx/root13) find dy/dx

Answers

Answered by rishu6845
1

Step-by-step explanation:

y =  {cos}^{ - 1} ( \:  \dfrac{3cosx - 2sinx}{ \sqrt{13} } ) \\  =  {cos}^{ - 1} ( \:  \dfrac{3}{ \sqrt{13} }  \:  \: cosx -  \dfrac{2}{ \sqrt{13} }  \:  \: sinx \: ) \\ let \\  \dfrac{3}{ \sqrt{13} }  = cos \alpha    \: \: and \:  \: sin \alpha  =  \dfrac{2}{ \sqrt{13} }  \\ so \\ tan \alpha  =  \dfrac{2}{3}  \\  \alpha  =  {tan}^{ - 1} ( \dfrac{2}{3} ) \\ now \\ y =  {cos}^{ - 1} (cosx \:  \: cos \alpha   -  \: sinx \: sin \alpha ) \\ y =  {cos}^{ - 1}  \:  \: cos \: (x +  \alpha ) \\ y = x +  \alpha  \\ y = x +  {tan}^{ - 1} ( \dfrac{2}{3} ) \\ differentiating \: with \: respect \: to \: x \\  \dfrac{dy}{dx}  =  \dfrac{d}{dx} (x) +  \dfrac{d}{dx} ( {tan}^{ - 1} ( \frac{2}{3} ) \: ) \\  \dfrac{dy}{dx}  = 1 + 0 = 1

Similar questions